

New systems, inevitable doubt, actual risk

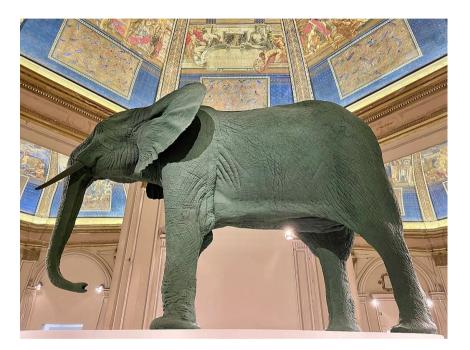
and how to deal with all that better

Peter Bishop^{1,2}, Andrey Povyakalo¹, Lorenzo Strigini¹

¹Centre for Software Reliability - City, University of London, U.K. ²Adelard LLP, London, U.K.

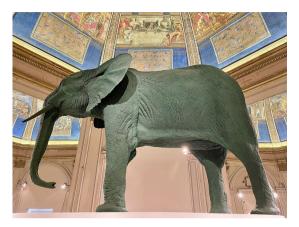
For highly critical computer applications we have...

sensible regimes, demanding


- *before* such a system is allowed into operation

 a demonstration that harm from its operation is unlikely enough and we have remarkably safe operation in many areas (e.g. scheduled civilian air transport)

- despite "ultra-high" dependability requirements like 10⁻⁹ probability of catastrophic failure conditions per flight hr
- so when a novel system comes along that requires UHD...
 e.g. "an automated car shall cause death at a rate ≤ 1 in 10⁻¹⁰ mile⁻¹ "
 ... we *rightly* demand a similarly stringent assurance regime


this should buy the public peace of mind... or should it?

There's an elephant in the room...

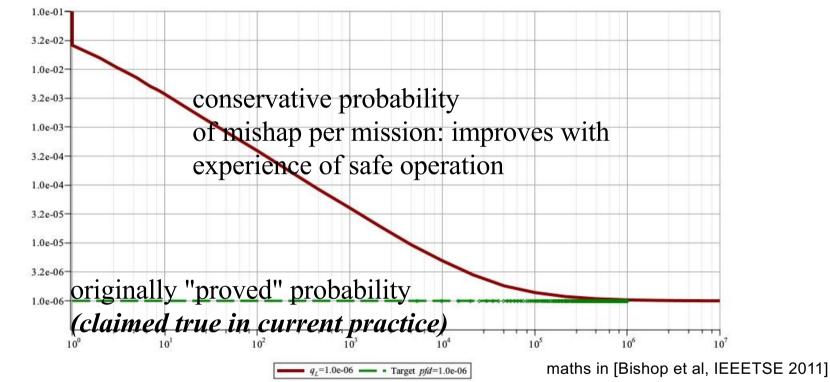
https://commons.wikimedia.org/wiki/File:The_elephant_in_the_room_ at_Arsenale_(52196585578).jpg license: https://creativecommons.org/licenses/by/2.0/deed.en

The elephant in the room... epistemic uncertainty

https://commons.wikimedia.org/wiki/File:The_elephant_in_the_room_ at_Arsenale_(52196585578).jpg license: https://creativecommons.org/licenses/by/2.0/deed.en

- sometimes that carefully verified demonstration of acceptable safety is wrong:
 - in operation after approval, dangerous flaws are found & fixed (see airworthiness directives)
 - or disasters happen (think Boeing 737 MAX)
 - e.g. in airliners, nuclear reactors a fraction of new systems have proved not to be ultra-safe
- however, accumulating safe, surprise-free operation under strict monitoring will reassure us about safety of a type

So, given a good argument showing that a system is safe enough


Say, it proves that the probability of mishap per mission, *pfd*, is $\leq q_L$, say $q_L \leq 10^{-6}$ *if* the argument is correct

- with probability p_L that the claim is correct of .. say p_L =90%
- what should the airline/regulator/passenger think of risk per flight now?
 - in the range [0, $p_L q_L + (1 p_L) q_H$]
 - $-q_H$: *pfd* if the argument is wrong typically unknown

with the numbers given, when you start operation, real risk per mission
is between [~0, ~0.1]
NOT [0..10⁻⁶]

What does a realistic assessment of risk look like?

Observing more and more safe operation you infer that even if this system belongs to the unlucky 10%, it cannot be *very* bad.... thus:

... you get close to the "demonstrated" low risk in the long run... asymptotically

This more realistic estimate should allow better decisions about licensing, deployment!

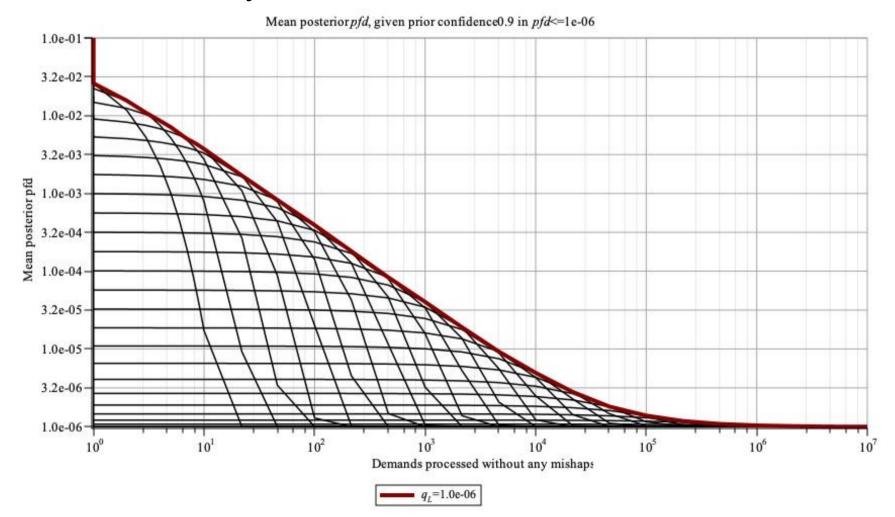
What is to be done?

- Given inevitability of doubt, acknowledge the attendant risk
- study history: how much we should doubt our claims, depending on kind of system and claim
- export from mature fields (aviation, nuclear, ...?) not bad theory but good practice: strict monitoring
- control overall fleet risk (our paper, ISSRE 2022)
- to reduce risk that we must live with, improve arguments with
 - not just claims "if argument is correct" but confidence in it
 - "backup" (higher confidence, modest claims) sub-arguments
 - higher confidence (hard! But somewhere low-hanging fruits?)
- to make better theory helpful, use psychology/sociology of risk decisions in the various applications

(and do the maths: we have been doing that)

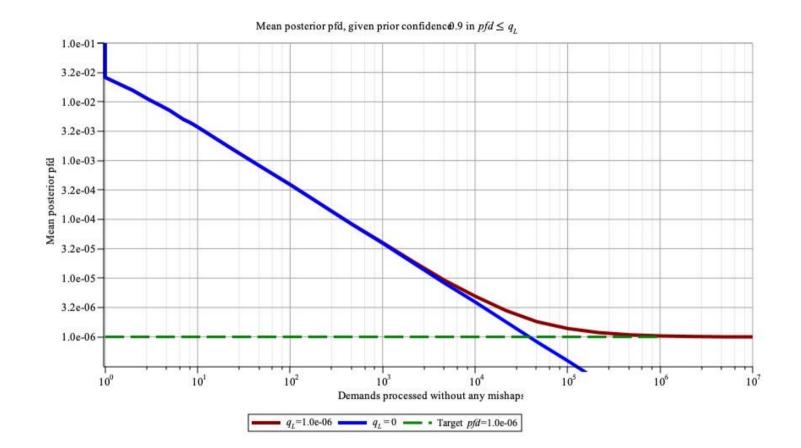
Thank you for your attention..

Questions, comments?


Do Email us

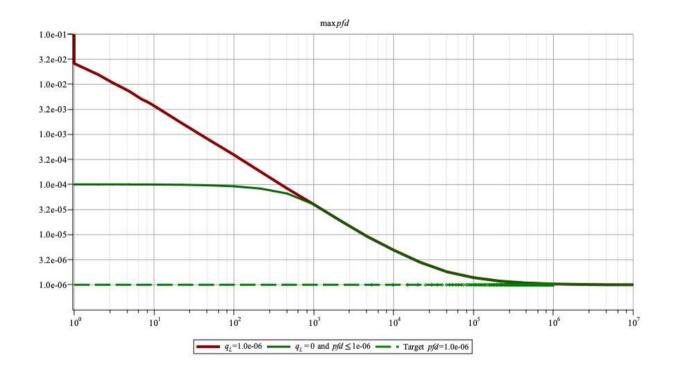
Theorems, extensions and references: a paper will be on Arxiv in a few days, ask us for the URL

SPARES for questions


How did we draw that curve of conservative maximum *pfd*?

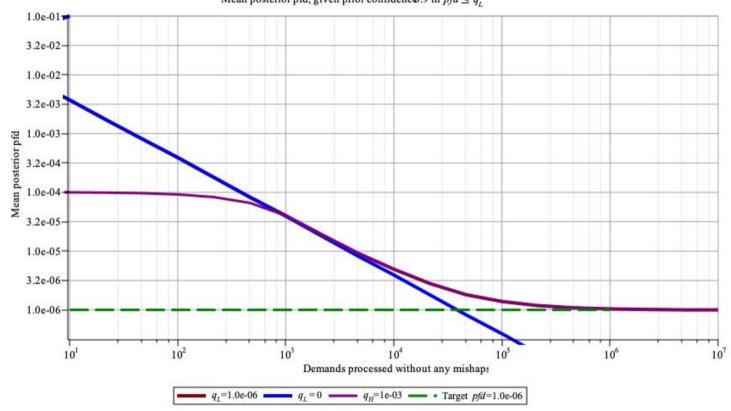
"conservative Bayesian inference"

Can you improve... by proving a better q_L ?


your curve will asymptotically approach that lower q_L

it helps – only in the long run!

How to add "backup" arguments


High prior confidence that if your main argument is wrong, still you know an upper bound on q_H that is <1

This limits initial risk; after a while, it stops helping

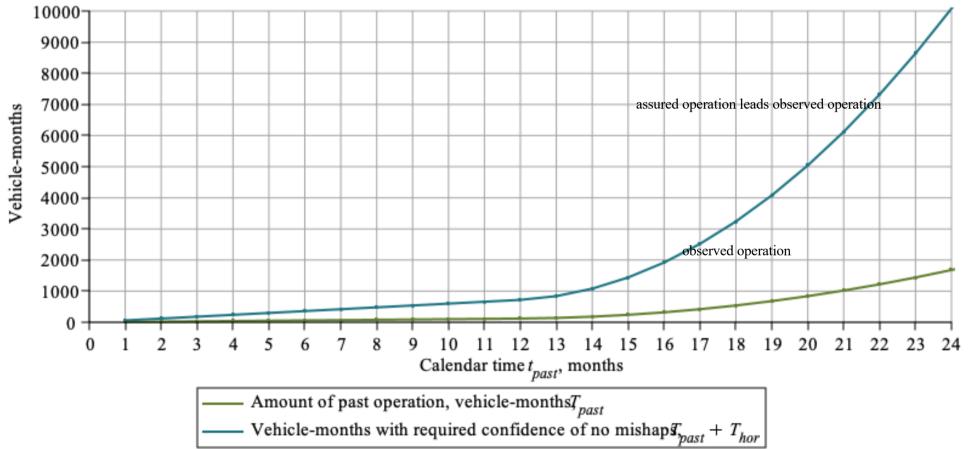
Combine both...?

It helps. Still long time to reach desired risk level Mean posterior pfd, given prior confidence 0.9 in $pfd \le q_r$

We could do better: multiple backups arguments, increased confidence in them

by studying the actual evidence about the specific system $_{\text{L. Strigini, IFIP WG10.4 workshop June 2023}}$

Why the current fiction that a verified claim is true?


- simpler
- inevitably, commercial/political pressures
 - who feels like defending "gambling with people's lives"?
- but importantly also:
 - human minds treat "epistemic uncertainty" differently from "aleatory uncertainty"
 - + people may accept that "safe" only means "low probability of accidents"
 - + but are uneasy accepting uncertainty *about that probability*
 - treating the latter uncertainty by probability goes against the grain
 - + for many experts and lay people alike
 - + (despite widespread use of Bayesian approaches to risk)
 - ... despite the distinction being often an illusion
- maybe the current fictitious separation has societal advantages?
 - + avoids some forms of corruption of the process?

How do we manage fleet level risk?

Example of "confidence bootstrapping":

incremental deployment contains overall risk of mishap for whole fleet (Bishop et al. . ISSRE 2022)

Accumulated operation and confidence horizon, in vehicle-months.

