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I Work on Crypto
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Cryptocurrency
 is your chance 

to get rich

Crypto means 
cryptography!

Either way is OK for me
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Blockchain Technology

Many “mysterious” characterizations

You can read

You can write

You can ask
me to execute

It is secure

It is robust

It is unalterable



Our Work on Blockchain
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consensus layer

decentralized
applications

…

… cryptographic
supports

CCS15,ICDCS18,20, ESORICS 20,21,…

EUROCRYPT16,CRYPTO18,21,NDSS20, AC 20,21, USENIX Sec22…

CCS20, PODC20,NDSS22,CCS22(a),CCS22(b),ICDCS22…



The Consensus/Atomic Broadcast 
Problem

tx1
tx2

tx3

tx4

tx5
tx6

tx7

tx8

Liveness: every honest transaction will be recorded

Safety (total order + agreement): all honest ledgers are the “same”
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Most Natural Challenges

SecurityEfficiency



Timing/Network Assumptions

Synchronous: all messages delivered within time d 

Weakly synchronous: all messages delivered within unknown time d 

Asynchronous: all messages will be eventually delivered
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• Without time bound, the protocol will proceed 
as network delivers — responsiveness

• No manual timeout, it saves engineers’ lives 

Further Benefits of 
Asynchronous Protocols

Most of existing platforms make timing assumptions
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Asynchronous Permissioned Consensus

Mostly thereotical Can it be practical? Yes, we can

FLP Impossibility: no deterministic protocol exists for asynchronous consensus
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Need some Efforts



The Evolving of Dumbo Protocols
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HoneyBadger
CCS ‘16

Dumbo 
“Classic”

(CCS ’20)

optimal comm / tx

optimal comm / tx
const running time

Dumbo 
“MVBA”
(PODC ’20)

Speeding 
Dumbo
(NDSS ’22)

optimal comm / tx
const running time

optimal msg

Dumbo-NG
(CCS’22)

optimal comm / tx
const running time

optimal msg

~ bandwidth limit 

Bolt-Dumbo-
Transformer

(CCS ’22)

optimal comm / tx
const running time

optimal msg

~ bandwidth limit 
as fast as HotStuffsmall # of rounds small # of rounds

small # of rounds

asymp optimal everything

Cachin et al
MVBA

 Crypto’ 01

const running time

tps-oblivious latency



Major insights from HBBFT

Asynchronous Common 
Subset is good for batching, 
to get linear per tx comm 

ACS can be built from 
binary Byzantine Agreement

Asynchronous Permissioned Consensus
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Decoupling HB-BFT
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RBC: if one honest 
node receives a tx, all 

honest nodes will 
receive tx

ABA: if honest nodes 
output 1, at least one 
honest node inputs 1



FLP Impossibility: no deterministic protocol exists for asynchronous consensus

Identifying the Bottleneck

ABA1

ABA2

ABA3

…

ABAn

Concurrent executions of 
large # of

randomized algorithms
stop at the slowest instance

There is indeed a slow one
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Dumbo2: Pushing ABA to Minimum
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Dumbo2: Pushing ABA to Minimum
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MVBA could blow up communication [HBBFT]



Experiments
100 AWS EC2 t2.medium instances uniformly spread in 10 regions world-wide

Run HBBFT with Dumbo1,Dumbo2 hand by hand
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Performance

Performance was achieved without any system optimization
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Paths for Practical Asynchronous 
Atomic Broadcast/Consensus

Atomic 
broadcast

ACS

MVBA RBC

+
ABA

Dumbo-MVBA
PODC’20

Dumbo2
CCS’20

RBC+MVBA

Reclaim the glory 
of MVBA for async 

consensus

To avoid 
heavy MVBA
w. large input

https://eprint.iacr.org/2020/842

https://eprint.iacr.org/2020/841
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RBC ABA

… …

https://eprint.iacr.org/2020/842
https://eprint.iacr.org/2020/841


Are we Done?
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If we in favor of throughput, or, in a very small scale



Security-Latency Dilemma
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Can we get the best of both? — as robust as right, as fast as left

fast, but may not 
have security

robust, but still 
quite slow

Deterministic Randomized



Optimistic Asynchronous Consensus
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Real-world networks might still be stable for most of the time

Fastlane

Async Fallback / View change

Kursawe-Shoup 02, Ramasamy-Cachin 05



Optimistic Asynchronous Consensus 
[KS02,RC05]
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RBC/CBC

Complain

If timeout

Decide where to “fallback”

If enough valid complaints

Catch up

Progress

pace-sync
recover/pessimistic path

MVBA with 
large inputs

MVBA with 
large inputs



MVBAs are still Complicated
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Consequence of a Slow Pace-sync in 
Practice
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….

Optimistic blocks pace-sync pessimistic path

Overall still much slower than fastlane even if network is stable majority of the time

Need a super light pace-sync And avoid pessimistic path as 
much as possible
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Bolt-Dumbo-Transformer

First, replace pessimistic path with new ACS (e.g., sDumbo-ACS)

New abstraction for Bolt for a cheapest possible Transformer



New Abstraction of Fastlane: Bolt
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Notorizable weak atomic broadcast (nwABC) 

Full-fledged atomic 
broadcast in 

optimistic case 
“handicapped” 

otherwise

If any one outputs a block with valid certificate, 
f+1 honest guys output a valid previous one

Instantiation1:
“provable” multicast

(simplified stable-leader 
HotStuff)

Instantiation2:
Provable reliable 

broadcast

Easy to get, but enables cheapest 
possible Transformer



When Bolt Got Stuck
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Complain with the largest index of block (with certificate)

If receiving 2f+1 complaints — majority of honest guys complain
Pick the largest index as input to run Transformer

If fewer than f+1honest guys 
making progress, no one will, thus 

will complain

If more than f+1honest guys 
making progress, some isolated 
guys could simply ask for help



How Does Notarizability Prepare 
For Fallback?
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Let us examine the input pattern for Transformer of honest nodes

Suppose the largest 
valid block index is v

Remember 
everyone receives a 

set C of 2f+1 
complaints

Claim 1. Every honest input index at least v-1

At least f+1 honest nodes (set Good) already got v-1

C intersects with Good



How Does Notarizability Prepare 
For Fallback?
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Let us examine the input pattern for Transformer of honest nodes

Suppose the largest 
valid block index is v

Otherwise f+1 honest nodes receive v+1

Claim 2. No one can complain with index >v+1

Now honest 
indices are 

narrowed to 
v-1, v, v+1



How Does Notarizability Prepare 
For Fallback?

30

Let us examine the input pattern for Transformer of honest nodes

Suppose the largest 
valid index of 

honest block is v

Claim 3. If no malicious nodes complain at indices v+1,

Now honest 
indices are 

narrowed to 
v-1, v, v+1

Then v+1 is out — it won’t be any honest node’s input



How Does Notarizability Prepare 
For Fallback?
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Let us examine the input pattern for Transformer of honest nodes

Suppose the largest 
valid index of 

honest block is v

At least f+1 honest nodes 
(set Better) already got v

C (the set of 2f+1 complaints) 
intersects with Better

Claim 4. If one malicious node complains at v+1,

Now honest 
indices are 

narrowed to 
v-1, v, v+1

Then v-1 is out — it won’t be any honest node’s input

Honest guys will input 
either (v-1,v) or (v, v+1)



Supercheap Pace-Sync: Transformer
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Honest guys will input 
either (v-1,v) or (v, v+1)

Just select one of two indices to make a decision for sync

Two-consecutive-value-BA (tcv-BA): fairly easy from Async Binary Agreement



Ensuring Data Retrievability
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If tcv-BA output u

Transformer asks everyone to sync to u-1

But it is also possible u=v-1, or v; sync to u-1 may revoke committed honest blocks

Fine-tune Bolt: run nwABC to output one block in every two blocks,
with one pending, complain at latest pending

 u could be v+1, thus no honest guy has this block



Bolt-Dumbo Transformer
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Skip pessimistic 
path if there is 
some progress

Every 
component 

could use the 
best instantiation

Bolt: 
“handicapped”:

Easy to get

Enabled Simplest 
possible 

Transformer:
AB(inary)A



Basic Latency and Overhead
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We intentionally run Transformer 
once every 50 blocks

100 AWS EC2 c5.large instances (2vCPU, 4G memory, “humble” configuration)
uniformly spread in 16 regions world-wide

The RBC based fastlane makes 
Transformer to terminate faster….



Throughput
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The RBC based fastlane has a much larger throughput with large batch size

100 AWS EC2 c5.large instances (2vCPU, 4G memory, “humble” configuration)
uniformly spread in 16 regions world-wide

More experimental and numerical analysis under different settings



Throughput/Latency Tradeoff
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100 AWS EC2 c5.large instances (2vCPU, 4G memory, “humble” configuration)
uniformly spread in 16 regions world-wide

HotStuff is with a stable leader 
We intentionally run Transformer 

once every 50 blocks Timeout = 2.5s, could be shorter
Intentionally trigger pace-sync for all muted



Towards Making Asynchronous 
Consensus Real
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The seemingly simple Broadcast-then-Agree structure is simplified dramatically

Is there inherent gap between async protocols and deterministic protocols? 
Best trade-offs among comm, comp, rounds, setup, etc?

Scale to thousands of nodes?



A Slightly Bigger Picture
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Async distributed computing, e.g., Federated learning

Async secure multi-party computation

Async consensus

Robust decentralized infrastructure

BoundsToolkits



Welcome to U Sydney
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Qiang Tang
The University of Sydney
qiang.tang@sydney.edu.au
http://alkistang.github.io/
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