
Dumbo Protocol Family
Making Asynchronous Consensus Real

Qiang Tang
The University of Sydney

1



I Work on Crypto

2

Cryptocurrency
 is your chance 

to get rich

Crypto means 
cryptography!

Either way is OK for me



3

Blockchain Technology

Many “mysterious” characterizations

You can read

You can write

You can ask
me to execute

It is secure

It is robust

It is unalterable



Our Work on Blockchain

4

consensus layer

decentralized
applications

…

… cryptographic
supports

CCS15,ICDCS18,20, ESORICS 20,21,…

EUROCRYPT16,CRYPTO18,21,NDSS20, AC 20,21, USENIX Sec22…

CCS20, PODC20,NDSS22,CCS22(a),CCS22(b),ICDCS22…



The Consensus/Atomic Broadcast 
Problem

tx1
tx2

tx3

tx4

tx5
tx6

tx7

tx8

Liveness: every honest transaction will be recorded

Safety (total order + agreement): all honest ledgers are the “same”

5



Most Natural Challenges

SecurityEfficiency



Timing/Network Assumptions

Synchronous: all messages delivered within time d 

Weakly synchronous: all messages delivered within unknown time d 

Asynchronous: all messages will be eventually delivered

7



• Without time bound, the protocol will proceed 
as network delivers — responsiveness

• No manual timeout, it saves engineers’ lives 

Further Benefits of 
Asynchronous Protocols

Most of existing platforms make timing assumptions

8



Asynchronous Permissioned Consensus

Mostly thereotical Can it be practical? Yes, we can

FLP Impossibility: no deterministic protocol exists for asynchronous consensus

9

Need some Efforts



The Evolving of Dumbo Protocols

10

HoneyBadger
CCS ‘16

Dumbo 
“Classic”

(CCS ’20)

optimal comm / tx

optimal comm / tx
const running time

Dumbo 
“MVBA”
(PODC ’20)

Speeding 
Dumbo
(NDSS ’22)

optimal comm / tx
const running time

optimal msg

Dumbo-NG
(CCS’22)

optimal comm / tx
const running time

optimal msg

~ bandwidth limit 

Bolt-Dumbo-
Transformer

(CCS ’22)

optimal comm / tx
const running time

optimal msg

~ bandwidth limit 
as fast as HotStuffsmall # of rounds small # of rounds

small # of rounds

asymp optimal everything

Cachin et al
MVBA

 Crypto’ 01

const running time

tps-oblivious latency



Major insights from HBBFT

Asynchronous Common 
Subset is good for batching, 
to get linear per tx comm 

ACS can be built from 
binary Byzantine Agreement

Asynchronous Permissioned Consensus

11



Decoupling HB-BFT

12

RBC: if one honest 
node receives a tx, all 

honest nodes will 
receive tx

ABA: if honest nodes 
output 1, at least one 
honest node inputs 1



FLP Impossibility: no deterministic protocol exists for asynchronous consensus

Identifying the Bottleneck

ABA1

ABA2

ABA3

…

ABAn

Concurrent executions of 
large # of

randomized algorithms
stop at the slowest instance

There is indeed a slow one

13



Dumbo2: Pushing ABA to Minimum

14



Dumbo2: Pushing ABA to Minimum

15

MVBA could blow up communication [HBBFT]



Experiments
100 AWS EC2 t2.medium instances uniformly spread in 10 regions world-wide

Run HBBFT with Dumbo1,Dumbo2 hand by hand

16



Performance

Performance was achieved without any system optimization
17



Paths for Practical Asynchronous 
Atomic Broadcast/Consensus

Atomic 
broadcast

ACS

MVBA RBC

+
ABA

Dumbo-MVBA
PODC’20

Dumbo2
CCS’20

RBC+MVBA

Reclaim the glory 
of MVBA for async 

consensus

To avoid 
heavy MVBA
w. large input

https://eprint.iacr.org/2020/842

https://eprint.iacr.org/2020/841

18

RBC ABA

… …

https://eprint.iacr.org/2020/842
https://eprint.iacr.org/2020/841


Are we Done?

19

If we in favor of throughput, or, in a very small scale



Security-Latency Dilemma

20

Can we get the best of both? — as robust as right, as fast as left

fast, but may not 
have security

robust, but still 
quite slow

Deterministic Randomized



Optimistic Asynchronous Consensus

21

Real-world networks might still be stable for most of the time

Fastlane

Async Fallback / View change

Kursawe-Shoup 02, Ramasamy-Cachin 05



Optimistic Asynchronous Consensus 
[KS02,RC05]

22

RBC/CBC

Complain

If timeout

Decide where to “fallback”

If enough valid complaints

Catch up

Progress

pace-sync
recover/pessimistic path

MVBA with 
large inputs

MVBA with 
large inputs



MVBAs are still Complicated

23



Consequence of a Slow Pace-sync in 
Practice

24

….

Optimistic blocks pace-sync pessimistic path

Overall still much slower than fastlane even if network is stable majority of the time

Need a super light pace-sync And avoid pessimistic path as 
much as possible



25

Bolt-Dumbo-Transformer

First, replace pessimistic path with new ACS (e.g., sDumbo-ACS)

New abstraction for Bolt for a cheapest possible Transformer



New Abstraction of Fastlane: Bolt

26

Notorizable weak atomic broadcast (nwABC) 

Full-fledged atomic 
broadcast in 

optimistic case 
“handicapped” 

otherwise

If any one outputs a block with valid certificate, 
f+1 honest guys output a valid previous one

Instantiation1:
“provable” multicast

(simplified stable-leader 
HotStuff)

Instantiation2:
Provable reliable 

broadcast

Easy to get, but enables cheapest 
possible Transformer



When Bolt Got Stuck

27

Complain with the largest index of block (with certificate)

If receiving 2f+1 complaints — majority of honest guys complain
Pick the largest index as input to run Transformer

If fewer than f+1honest guys 
making progress, no one will, thus 

will complain

If more than f+1honest guys 
making progress, some isolated 
guys could simply ask for help



How Does Notarizability Prepare 
For Fallback?

28

Let us examine the input pattern for Transformer of honest nodes

Suppose the largest 
valid block index is v

Remember 
everyone receives a 

set C of 2f+1 
complaints

Claim 1. Every honest input index at least v-1

At least f+1 honest nodes (set Good) already got v-1

C intersects with Good



How Does Notarizability Prepare 
For Fallback?

29

Let us examine the input pattern for Transformer of honest nodes

Suppose the largest 
valid block index is v

Otherwise f+1 honest nodes receive v+1

Claim 2. No one can complain with index >v+1

Now honest 
indices are 

narrowed to 
v-1, v, v+1



How Does Notarizability Prepare 
For Fallback?

30

Let us examine the input pattern for Transformer of honest nodes

Suppose the largest 
valid index of 

honest block is v

Claim 3. If no malicious nodes complain at indices v+1,

Now honest 
indices are 

narrowed to 
v-1, v, v+1

Then v+1 is out — it won’t be any honest node’s input



How Does Notarizability Prepare 
For Fallback?

31

Let us examine the input pattern for Transformer of honest nodes

Suppose the largest 
valid index of 

honest block is v

At least f+1 honest nodes 
(set Better) already got v

C (the set of 2f+1 complaints) 
intersects with Better

Claim 4. If one malicious node complains at v+1,

Now honest 
indices are 

narrowed to 
v-1, v, v+1

Then v-1 is out — it won’t be any honest node’s input

Honest guys will input 
either (v-1,v) or (v, v+1)



Supercheap Pace-Sync: Transformer

32

Honest guys will input 
either (v-1,v) or (v, v+1)

Just select one of two indices to make a decision for sync

Two-consecutive-value-BA (tcv-BA): fairly easy from Async Binary Agreement



Ensuring Data Retrievability

33

If tcv-BA output u

Transformer asks everyone to sync to u-1

But it is also possible u=v-1, or v; sync to u-1 may revoke committed honest blocks

Fine-tune Bolt: run nwABC to output one block in every two blocks,
with one pending, complain at latest pending

 u could be v+1, thus no honest guy has this block



Bolt-Dumbo Transformer

34

Skip pessimistic 
path if there is 
some progress

Every 
component 

could use the 
best instantiation

Bolt: 
“handicapped”:

Easy to get

Enabled Simplest 
possible 

Transformer:
AB(inary)A



Basic Latency and Overhead

35

We intentionally run Transformer 
once every 50 blocks

100 AWS EC2 c5.large instances (2vCPU, 4G memory, “humble” configuration)
uniformly spread in 16 regions world-wide

The RBC based fastlane makes 
Transformer to terminate faster….



Throughput

36

The RBC based fastlane has a much larger throughput with large batch size

100 AWS EC2 c5.large instances (2vCPU, 4G memory, “humble” configuration)
uniformly spread in 16 regions world-wide

More experimental and numerical analysis under different settings



Throughput/Latency Tradeoff

37

100 AWS EC2 c5.large instances (2vCPU, 4G memory, “humble” configuration)
uniformly spread in 16 regions world-wide

HotStuff is with a stable leader 
We intentionally run Transformer 

once every 50 blocks Timeout = 2.5s, could be shorter
Intentionally trigger pace-sync for all muted



Towards Making Asynchronous 
Consensus Real

38

The seemingly simple Broadcast-then-Agree structure is simplified dramatically

Is there inherent gap between async protocols and deterministic protocols? 
Best trade-offs among comm, comp, rounds, setup, etc?

Scale to thousands of nodes?



A Slightly Bigger Picture

39

Async distributed computing, e.g., Federated learning

Async secure multi-party computation

Async consensus

Robust decentralized infrastructure

BoundsToolkits



Welcome to U Sydney

40



Qiang Tang
The University of Sydney
qiang.tang@sydney.edu.au
http://alkistang.github.io/

41

Dumbo Protocol Family
Making Asynchronous Consensus Real

mailto:qiang.tang@sydney.edu.au

