Blockchain for Cyberphysical Systems

UNSW

Salil Kanhere

School of Computer Science and Engineering UNSW Sydney, Australia E: salil.kanhere@unsw.edu.au

in : www.linkedin.com/in/salilkanhere

Sidra Malik UNSW & CSIRO

Volkan Dedeoglu CISRO

Raja Jurdak QUT

Guntur Dharma Putra, UNSW

Cyberphysical Systems = tight conjoining of and coordination between computation and physical resources

Data Tsunami

Data Produced by IoT Devices

25 GB/hour A modern, fully instrumented car.

51,200 GB/hour A fully instrumented jet engine.

500 million data readings/day A smart meter project.

A typical wind farm.

150,000 data points/

second

500 GB/day A single turbine compressor blade.

Source: Simafore, RTInsights, Cisco

40% of all data by 2020 Produced by sensors.

Current IoT/CPS Ecosystems

- 3 Tiers:
- Low-power IoT devices
- Gateway
- Cloud

Centralization does not scale

Centralised brokered communication models based on the client-server paradigm

All devices are identified, authenticated and connected through cloud servers

Often, two IoT devices sitting next to each other will communicate through the Internet

Security is a significant challenge

Establishing trust can be difficult

Many actors with different objectives and possibly conflicting goals

Challenges facing CPS

- Heterogeneity in device resources
- Multiple attack surfaces
- Scale
- Centralization
- Lack of control over how data is shared/used and lack of auditability
- Difficult to establish trust across complex CPS ecosystems
- Complex interactions of different OS/software stacks/hardware
- Poor implementation of security/privacy mechanisms

•

Salient Features of Blockchain

- Tamper-proof storage of information
- Auditability/Transparency
- No reliance on third-parties
- Distributed Trust
- Data provenance
- Cryptographically secure
- Smart contracts can automate numerous processes

Blockchain for Cyberphysical Systems

Ali Dorri, Salil Kanhere, Raja Jurdak Copyright: 2020 Pages: 290 ISBN: 9781630817831 Artech House, USA/UK Ali Dorri • Salil Kanhere • Raja Jurdak

Blockchain for Cyberphysical Systems

Supply Chain Lifecycle

A system of organizations, people activities, involved in the distribution of raw material or finished goods

- Food
- Pharmaceutical
- Aerospace and Defense
- Practically any consumer goods

Traceability

Counterfeiting

Needles in Strawberries

Two dead from listeria linked to smoked salmon

Two elderly people have died. Source: Getty

Contaminated smoked salmon from Tasmania is the likely cause of two fatal listeriosis cases in New South Wales and Victoria.

ISSUES

Challenges and Solutions

ProductChain - Overview

- Holistic approach, Consortium to manage a permissioned blockchain
- Transaction Vocabulary
 - Integration of IoT data from embedded sensors
 - Improved writing accessibility to the ledger
 - Each Food Supply Chain (FSC) participant has a well-defined role
- Scalable Network Architecture
 - Use Sharding
- Access Control List
 - · Hide trade flows, limit read/write access to ledger

S. Malik, S. S. Kanhere and R. Jurdak, ProductChain: Scalable Blockchain Framework to Support Provenance in Supply Chains, in Proceedings of the 17th IEEE Symposium on Network Computing and Applications (NCA), Boston, November 2018.

ProductChain Architecture

Trust: Challenges

- How do we trust data written into the blockchain?
 - Hashed data on the blockchain represents digital observations of physical events
- Need for a trust management system with the following requirements
 - Multi-faceted assessment of trustworthiness of logged data
 - Flexibility for ascribing trust to the supply chain entities and commodities and at different granularities

TrustChain: Contributions BC-based reputation/trust framework

Flexible and granular

Smart contracts for automation

Accountability mechanisms

Hyperledger Fabric Implementation

Minimal overheads

S. Malik, V. Dedeoglu, S. S. Kanhere and R. Jurdak, TrustChain: Trust Management in Blockchain and IoT Supported Supply Chains, in Proceedings of the IEEE International Conference on Blockchain, Atlanta, July 2019

Data Layer

Data Layer

Multi-sourced Data Observations:

- Sensors
- •Buyer's Rating (in a trade event)
- Regulatory Bodies

Blockchain Layer

Blockchain Layer

Smart Contracts

Reputation and Trust Model

Commodity Reputation

DeTRM: Trust and Reputation Model

Commodity trust is based on sensor data

$$\mathbf{V}^{n} = \begin{bmatrix} v_{11}^{n} & v_{12}^{n} & \dots & v_{1p}^{n} \\ v_{21}^{n} & v_{22}^{n} & \dots & v_{2p}^{n} \\ \vdots & \vdots & \ddots & \vdots \\ v_{o1}^{n} & v_{o2}^{n} & \dots & v_{op}^{n} \end{bmatrix}$$

and $\hat{t}_{n,q}$ is calculated as follows:

$$\widehat{t}_{n,q}(o,p) = \frac{(1-\gamma)}{p} \sum_{i=1}^{o} \sum_{j=1}^{p} \gamma^{(o-i)} \delta_{j,i} \mathcal{V}_{j,i}^{C} \mathcal{V}_{j,i}^{E}$$

where

$$\delta_{j,i} = \begin{cases} \delta_{max}, & \text{if } \mathbf{T}_{min} < \mathcal{V}_{j,i} < \mathbf{T}_{max} \\ \delta_{min}, & \text{otherwise,} \end{cases}$$

Participant trust is based on buyer feedback

$$\widehat{T}_n(r) = (1 - \gamma) \sum_{i=1}^r \gamma^{(r-i)} \sigma_i$$

$$\sigma_i = \frac{1}{|\mathbf{t}\mathbf{c}_i|} \sum_{tc_j \in \mathbf{t}\mathbf{c}_i} \psi_{tc_j} tc_j$$

Participant reputation is weighted average of commodity trust, participant trust and regulator rating

$$\widehat{R}_n(q,r,u) = \frac{w_t}{|\widehat{\mathbf{t}}_n|} \sum_{\widehat{t}_{n,q} \in \widehat{\mathbf{t}}_n} \widehat{t}_{n,q} + w_T \widehat{T}_n(r) + w_e \widehat{E}_n(u)$$

where

$$\widehat{E}_n(u) = (1-\gamma) \sum_{i=1}^u \gamma^{(u-i)} e_i$$

G. D. Putra, C. Kang, S. S. Kanhere and J. W. K. Hong, DeTRM: Decentralised Trust and Reputation Management for Blockchain-based Supply Chains, in Proceedings of the IEEE International Conference on Blockchain and Cryptocurrency (ICBC), virtual, May 2022

Application Layer

Application Layer

Queries

- Computing trust rating for supply chain entities and reputation of commodity
- Properties of commodities and traders

Rewards

• Incentivizing honest traders

Penalties

• Penalize dishonest behaviour

TrustChain: Evaluations

Throughput and Latency vs. Transaction Send Rate

TrustChain Baseline

Throughput and Latency vs. Transaction Send Rate

Trust evolution $(t_{n,q})$ of assets stored in various conditions.

The trust decline is unique for each non-ideal condition.

The throughput and latency against the baseline (plain SCMS w/o TRM).

Our solution incurs negligible overheads with similar throughput.

The CPU and memory usage against the baseline (plain SCMS w/o TRM).

Minimal and insignificant overheads are observed.

Privacy: Challenges

Privacy Preservation Issues

Privacy Preservation Solution

S. Malik, V. Dedeoglu, S. S. Kanhere and R. Jurdak, PrivChain: Provenance and Privacy Preservation in Blockchain enabled Supply Chains, in Proceedings of the IEEE International Conference on Blockchain, Helsinki, August 2022

PrivChain: Key Contributions

- Zero-Knowledge Proof (ZKP) based privacy preservation solution where proof of provenance is provided without disclosing privacy-sensitive data
- Automated verification of the provenance proofs and the integration of the incentive mechanism that enforces instant rewards
- Proof of concept implementation with minimal overheads for proof verification

PrivChain Framework

PrivChain Setup

PrivChain Proof Generation

PrivChain Proof verification and Incentive Payments

PrivChain Trade Flow Protection

 The provenance of a final product: finding the origin of each ingredient using a TX_{produce}

$$TX_{produce} = [ID_{FP}|Enc((ID_{g1},...,ID_{gn}),Key)|$$
$$[regions]|Sig_{buy}]$$

PrivChain Evaluations

Identity

Permissioned Blockchain

TradeChain: Key Contributions

- integrated framework for two separate ledgers:
 - IDML for decentralised identity management and
 - TML for recording trade events on the ledger
- supply chain entities can
 - use ZKPs on their credentials while trading on TML
 - define dynamic access rules for traceability and data collation
- A PoC implementation on Hyperledger Indy and Fabric to demonstrate efficacy and minimal overheads

Decentralisation of Identity Management

Decentralised, "trustless" ID Provider

- The peer-to-peer relationship secured by public/private key cryptography
- Decentralised registry that verifies the relationships
- Returning people to direct, private connections
- Me (user)" centric

TradeChain Detailed Framework

5: Get credentials

TradeChain Token-based Querying

TradeChain Evaluations

trading a commodity

Time Overheads

Future Opportunities

- Interoperability
 - need to design protocols and standards to develop an interoperability architecture among the growing parallel solutions
 - Various interoperability approaches can be adopted such as **APIs and gateways, pub-sub models, notaries, smart contracts,** etc.
- Ascertaining trust
 - Reputation modules are not the only option!
 - Other solutions such as incorporating smart biological fingerprints have still not been fully explored
- Incentives
 - Mechanisms to incentivise famers/small-scale suppliers need to be designed
 - Smart contracts for actioning incentives

Future Opportunities

- Governance
 - some central monitoring or governance is required for regulatory purposes
 - need to devise a governance framework which allows some level of autonomy, but at the same time, can assist the government bodies with having an oversight over the trade activities
- Sustainability
 - Quantifying the carbon footprint of complex supply chains is necessary
 - Mechanisms to check if **sustainability practices** were adopted
 - Improving working/living conditions of farmers

E: <u>salil.kanhere@unsw.edu.au</u>

in www.linkedin.com/in/salilkanhere

