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Growing Use of Machine Learning/Artificial Intelligence in
Safety-Critical Autonomous Systems

Global Market Insigh '
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Growing Concerns about Safety:
* Numerous papers showing that Deep Neural Networks can be easily fooled

* Accidents, including some fatal, involving potential failure of Al/ML-based
perception systems in self-driving cars
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Can Formal Methods Help?

Formal methods = Mathematical, Algorithmic techniques for modeling,
design, analysis
— Specification: WHAT the system must/must not do

— Verification: WHY it meets the spec. (or not)

— Synthesis: HOW it meets the spec. (correct-by-construction design)

Can we address the Design & Verification challenges of Al/ML-based
Autonomy with Formal Methods?




Cha"enges for Verlfled AI S. A. Seshia, D. Sadigh, S. S. Sastry.
Towards Verified Artificial Intelligence. July 2016. https://arxiv.org/abs/1606.08514.
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Need Principles for Verified Al

Challenges Principles
1. Environment (incl. —
Human) Modeling
2. Formal Specification —
3. Learning Systems ?
— .

Representation

4. Scalable Training, —_—
Testing, Verification

5. Design for Correctness

S. A. Seshia, D. Sadigh, S. S. Sastry. Towards Verified Artificial Intelligence. http://learnverify.org/VerifiedAl
July 2016. https://arxiv.org/abs/1606.08514.
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Talk Outline

e Environment Modeling

e Simulation-Based Verification

e Simulation = Road Testing

e Principles for Verified Al
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Environment Modeling: Know Your Assumptions!
What’s Unknown/

Approach
Uncertain
Probabilistic Programming and Reasoning
Parameters [D. Fremont et al., PLDI 2019]

£
:cf . Learning Models from Data/Interaction
5| Behaviors/ [D. Sadigh et al., RSS & IROS 2016;
o Dynamics M. Vazquez-Chanlatte et al., NeurlPS 2018]
S

Agents / Introspective Environment Modeling

Objects [S. A. Seshia, RV 2019]
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SCENIC: Environment Modeling and Data Generation

« Scenic is a probabilistic programming language defining distributions over scenes/scenarios
» Use cases: data generation, test generation, verification, debugging, design exploration, etc.

model scenic.domains.driving.model

model scenic.domains.driving.model
behavior PullIntoRoad():
ego = Car while (distance from self to ego) > 15:
wait
spot = OrientedPoint on visible curb FollowLaneBehavior(lane=ego. lane)
badAngle = Uniform(1.0, -1.0) * Range(10, 20) deg _ o o
parkedCar = Car left of spot by 0.5, ego = Car with behavior DriveAvoidingCollisions
facing badAngle relative to roadDirection spot = OrientedPoint on visible curb

badAngle = Uniform(1.0, -1.0) * Range(10, 20) deg
DCINICHEE A EIN GO NIl |parkedcar = Car left of spot by 0.5,
facing badAngle relative to roadDirection,

with behavior PullIntoRoad

[

Image

Video
created
, created
with with
GTA-V & CARLA

/A Em
4

[D. Fremont et al., “Scenic: A Language for Scenario Specification and Scene Generation”, TR 218, PLDI 2019.]
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Some Applications of Scenic [details in PLDI 2019 paper]

e Data Generation, (Re)-Training

— More controllable, interpretable
Car detection

with
occlusions

— Improves performance significantly

— Rare scenarios, controlled
distributions, etc.

e Debugging Failures
— Vary scenarios systematically
— Explain failures of ML

° Design Space EXpIoration Test Hypothesis: does the car model lead to a mis-detection?
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Simulation-Based Verification

e Start with System-Level Specification
— Temporal Logic/Cost Function
— Transform Logical Spec into Cost Function
- Gy (dist(vehicle, obstacle) > §) - infg ; [ dist(vehicle, obstacle) - § ]

e Falsification: Verification as Optimization
— Directed search for property violations in simulation

e Scalability requires Compositional Falsification
— Abstract high-dimensional ML (DNN) models
— Model semantic feature space (e.g. with Scenic program)
— Semantic adversarial analysis of ML models

— see [Dreossi, Donze, Seshia, NASA Formal Methods 2017; Dreossi, Jha, Seshia,
CAV 2018]

S. A. Seshia
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VERIFAI: A Toolkit for the Design and Analysis of Al-Based
Systems [cav 2019}
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https://github.com/BerkeleyLearnVerify/VerifAI

Case Study for Temporal Logic Falsification with
VerifAl: Navigation around an accident scenario

Lane
Keeping

ane change
complete

i —

Ego Car (AV) Broken Car



Modeling Case Study in the SCENIC Language

# Pick location for blockage randomly along curb
blockageSite = OrientedPoint curb

# Place traffic cones

spotl = OrientedPoint blockageSite (0.3, 1)
conel = TrafficCone spotl,

(0, 360) deg

# Place disabled car ahead of cones
SmallCar spot2 (-1, 0.5) @ (4, 10),
(0, 360) deg

Fremont et al., Scenic: A Language for Scenario Specification and Scene Generation, PLDT 2019.



Using Scenic to Generate Initial Scenes




Using Scenic to Generate Initial Scenes
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Using Scenic to Generate Initial Scenes
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Analyzing the failure

Fix the controller: Retrain the perception module:
Update model assumptions Collect the counter-example images and
and re-design controller retrain the network [I[JCAI'18]

d = 30 Q
——— Incorrectly detected 14.5 | TN ity
Pk Y WEACTE ' |
Violates controller
assumptions _



From Simulation to Real-World Testing: Key Questions

= #1 Safety violations in simulation: Do they transfer
& E9/N  to the real world? How well?

¥ 40 #2 Scenario testability: Can we use formally guided
noa simulation to effectively design real-world tests?
First use of formal methods for scenario-based testing of Al-based autonomy
in both simulation and real world
MENTUM
@ STATION
Fremont, Kim, Pant, Seshia, Acharya, Bruso, Wells, Lemke, Lu, Mehta, “Formal Gwried and Operated By AKANCND
Scenario-Based Testing of Autonomous Vehicles: From Simulation to the Real & LGSV )
World”, Arxiv e-prints, https://arxiv.org/abs/2003.07739 [ITSC 2020] SIMULATOR

autonomous vehicle development 19



https://arxiv.org/abs/2003.07739
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Source: Fremont et al., “Formal Scenario-Based Testing of Autonomous Vehicles: From Simulation to the Real

World”, Intelligent Transportation Systems Conference (ITSC), September 2020. https://arxiv.org/abs/2003.07739
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Scenario Overview: Focus on Vulnerable Road Users (VRUs)

Pedestrian fatalities: 53% increase in
the last decade (2009-2019)
2019: ~6500 (estimated)

Of all traffic fatalities, 17% are
Pedestrians

Fatalities at night (low-light, limited
vision environment)

Source:
GHSA: https://www.thecarconnection.com/news/1127308 pedestrian-deaths-reach-30-year-high-in-2019

ITHS: https://www.iihs.orq/topics/pedestrians-and-bicyclists
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Test Equipment and Use at AAA GoMentum Testing Grounds

Robotic platform for Test
Targets

Scenario Execution

[Shows EuroNCAP VRU AEB]

SPEEDR
LIMIT

25
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Scenario Evaluation

Object & Event
Detection/Response:
Metrics & Evaluation

Object detection
Time to collision
Separation distance
Deceleration profile
Autonomy
Disengagement

22



Example Scenario: AV making right turn, pedestrian crossing

Pedestrian
start point

Pedestrian
hesitates

Pedestrian
B e end point
Lincoln MKZ running Apollo 3.5 BEB
o e
ego = EgoCar at 38.6 @ 183.9, # LGSVL coordinates
facing 10 deg relative to roadDirection,
with behavior DriveTo(40 @ 225.2)
ped = Pedestrian at 19.782 @ 225.680,
facing 90 deg relative to roadDirection,

f\ . -

with startDelay (7, 15), | # (a,b) = uniform
with walkDistance (4, 7),| # distribution on|
with hesitateTime (1, 3) | # that interval

~ Zoveer

Snippet of Scenic program

S. A. Seshia Fundamental Research - Contract FA8750-18-C-0101



Results: Falsification and Test Selection
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Results: Does Safety in Simulation = Safety on the Roa

Unsafe in simulation = unsafe on the road: 62.5% (incl. collision)
Safe in simulation = safe on the road: 93.5% (no collision)

O T 77 3 e

S. A. Seshia ' S ST i e A '
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Results: Why did the AV Fail?

Perception Failure: Apollo 3.5 lost track of the pedestrian several times
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Results: How well do the trajectories match?

Green — AV real
Blue — AV sim

Orange — Ped real
Yellow — Ped sim

S1 Run 2 F1 Run1l

S. A. Seshia Fundamental Research - Contract FA8750-18-C-0101 27



Other Contributions Counterexample-Guided Retraining
Boeing research automated taxiing system
Used Scenic and VerifAl to find failures and

Open-Source Verified Al Toolkit retrain to eliminate [CAV 2020]

GitHub (VerifAl & Scenic, on github)

Verified Human-Robot Collaboration |
] Learning Specifications from
Demonstrations, Interaction-Aware

Control, etc. [IROS 2016, NeurlPS 2018, ‘
CAV 2020] ' ¥ ORIGINAL

Run-Time Assurance

SOTER framework based on Simplex 5
architecture [DSN 2019]

RETRAINED

S. A. Seshia



Conclusion: Towards Verified Al/ML based Autonomy

S. A. Seshia

Challenges

Core Principles

1.

Environment (incl. —
Human) Modeling

Data-Driven, Introspective, Probabilistic
Modeling

2. Specification — Start with System-Level Specification,
then Component Spec (robustness, ...)
3. Learning Systems Abstraction, Semantic Representation,
Complexity — " and Explanations
4. Efficient Training, ___, Compositional Analysis and Semantics-
Testing, Verification directed Search/Training
5. Design for Correctness — Oracle-Guided Inductive Synthesis;

Run-Time Assurance

Thank you!

S. A. Seshia, D. Sadigh, S. S. Sastry.

Towards Verified Artificial Intelligence.

July 2016. https://arxiv.org/abs/1606.08514.
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