Verified Artificial Intelligence and Autonomy

Sanjit A. Seshia

Professor

EECS Department, UC Berkeley

IFIP WG10.4 IVDS Workshop January 31, 2021

Growing Use of Machine Learning/Artificial Intelligence in Safety-Critical Autonomous Systems

Growing Concerns about Safety:

Source: gminsights.com

- Numerous papers showing that Deep Neural Networks can be easily fooled
- Accidents, including some *fatal*, involving potential failure of AI/ML-based perception systems in self-driving cars

Can Formal Methods Help?

Formal methods = Mathematical, Algorithmic techniques for modeling, design, analysis

- <u>Specification</u>: WHAT the system must/must not do
- <u>Verification</u>: WHY it meets the spec. (or not)
- <u>Synthesis:</u> HOW it meets the spec. (correct-by-construction design)

Can we address the <u>Design & Verification challenges</u> of AI/ML-based Autonomy with Formal Methods?

Challenges for Verified Al

S. A. Seshia, D. Sadigh, S. S. Sastry.

Towards Verified Artificial Intelligence. July 2016. https://arxiv.org/abs/1606.08514.

Need Principles for Verified AI

Principles

- 1. Environment (incl. Human) Modeling
- 2. Formal Specification -
- 3. Learning Systems Representation
- 4. Scalable Training, Testing, Verification
- 5. Design for Correctness

S. A. Seshia, D. Sadigh, S. S. Sastry. *Towards Verified Artificial Intelligence*. http://learnverify.org/VerifiedAI July 2016. https://arxiv.org/abs/1606.08514.

Talk Outline

• Environment Modeling

• Simulation-Based Verification

• Simulation \rightarrow Road Testing

• Principles for Verified AI

Environment Modeling: Know Your Assumptions!

What's Unknown/ Uncertain

Parameters

More Challenging

Behaviors / Dynamics

Agents / Objects

Approach

Probabilistic Programming and Reasoning [D. Fremont et al., PLDI 2019]

Learning Models from Data/Interaction

[D. Sadigh et al., RSS & IROS 2016; M. Vazquez-Chanlatte et al., NeurIPS 2018]

Introspective Environment Modeling [S. A. Seshia, RV 2019]

SCENIC: Environment Modeling and Data Generation

- Scenic is a probabilistic programming language defining distributions over scenes/scenarios
- Use cases: data generation, test generation, verification, debugging, design exploration, etc.

[D. Fremont et al., "Scenic: A Language for Scenario Specification and Scene Generation", TR 2018, PLDI 2019.] S. A. Seshia

Some Applications of Scenic [details in PLDI 2019 paper]

- Data Generation, (Re)-Training
 - More controllable, interpretable
 - Improves performance significantly
 - Rare scenarios, controlled distributions, etc.

Car detection with occlusions

- Debugging Failures
 - Vary scenarios systematically
 - Explain failures of ML

• Design Space Exploration

Test Hypothesis: does the car model lead to a mis-detection?

Simulation-Based Verification

- Start with System-Level Specification
 - Temporal Logic/Cost Function
 - Transform Logical Spec into Cost Function
 - $G_{[0,\tau]}(dist(vehicle, obstacle) > \delta) \rightarrow inf_{[0,\tau]} [dist(vehicle, obstacle) \delta]$
- Falsification: Verification as Optimization
 - Directed search for property violations in simulation
- Scalability requires Compositional Falsification
 - Abstract high-dimensional ML (DNN) models
 - Model semantic feature space (e.g. with Scenic program)
 - Semantic adversarial analysis of ML models
 - see [Dreossi, Donze, Seshia, NASA Formal Methods 2017; Dreossi, Jha, Seshia, CAV 2018]

VERIFAI: A Toolkit for the Design and Analysis of AI-Based

Systems [CAV 2019]

https://github.com/BerkeleyLearnVerify/VerifAI

Case Study for Temporal Logic Falsification with VerifAI: Navigation around an accident scenario

Modeling Case Study in the SCENIC Language

. . .

```
# Place disabled car ahead of cones
SmallCar ahead of spot2 by (-1, 0.5) @ (4, 10),
facing (0, 360) deg
```


Fremont et al., Scenic: A Language for Scenario Specification and Scene Generation, PLDI 2019.

Using Scenic to Generate Initial Scenes

Using Scenic to Generate Initial Scenes

Using Scenic to Generate Initial Scenes

Falsification

TAXABLE PARTY

Analyzing the failure

Fix the controller: Update model assumptions and re-design controller Retrain the perception module: Collect the counter-example images and retrain the network [IJCAI'18]

From Simulation to Real-World Testing: Key Questions

<u>#1</u> Safety violations in simulation: Do they transfer to the real world? How well?

#2 Scenario testability: Can we use formally guided simulation to effectively design real-world tests?

First use of formal methods for scenario-based testing of AI-based autonomy in both simulation and real world

Fremont, Kim, Pant, Seshia, Acharya, Bruso, Wells, Lemke, Lu, Mehta, *"Formal Scenario-Based Testing of Autonomous Vehicles: From Simulation to the Real World"*, Arxiv e-prints, <u>https://arxiv.org/abs/2003.07739</u> [*ITSC 2020*]

Owned and Operated by AAA NCNU

Simulation software to accelerate safe autonomous vehicle development

Formal Scenario-Based Testing (with Scenic and VerifAI)

Source: Fremont et al., *"Formal Scenario-Based Testing of Autonomous Vehicles: From Simulation to the Real World"*, Intelligent Transportation Systems Conference (ITSC), September 2020. <u>https://arxiv.org/abs/2003.07739</u>

Scenario Overview: Focus on Vulnerable Road Users (VRUs)

+53%

Pedestrian fatalities: 53% increase in the last decade (2009-2019) 2019: ~6500 (estimated)

Of all traffic fatalities, 17% are Pedestrians

6/%

Fatalities at night (low-light, limited vision environment)

Source:

GHSA: https://www.thecarconnection.com/news/1127308_pedestrian-deaths-reach-30-year-high-in-2019 IIHS: https://www.iihs.org/topics/pedestrians-and-bicyclists

Test Equipment and Use at AAA GoMentum Testing Grounds

Scenario Execution

[Shows EuroNCAP VRU AEB]

Scenario Evaluation

Object & Event Detection/Response: Metrics & Evaluation

- Object detection
- Time to collision
- Separation distance
- Deceleration profile
- Autonomy Disengagement

Example Scenario: AV making right turn, pedestrian crossing

S. A. Seshia

Fundamental Research - Contract FA8750-18-C-0101

Results: Falsification and Test Selection

Results: Does Safety in Simulation \rightarrow Safety on the Road?

Unsafe in simulation \rightarrow unsafe on the road: 62.5% (incl. collision) Safe in simulation \rightarrow safe on the road: 93.5% (no collision)

S. A. Seshia

25

Results: Why did the AV Fail?

Perception Failure: Apollo 3.5 lost track of the pedestrian several times

迷 Applications	😻 F5 - Google Dri 👹 Dream λew - M 💼 Alt	ernate-Trans 💼 Videos 🛛 💼 S1	•_ yash@in_dev_d	Videos - File M	≝ F6_2020-01-28 🚺 赵		🛛 🖇 🖼 🛜 💡 yash 🜒 🗗 (0:00, 100
6			Dreamview - Mozilla Firefox				↑ - J
o Dreamview	× +						
< → ୯ û	0 () localhost:8888					⊠ ☆	¥ III\ 🗊 🔍 🏮 🏮
Getting Started	🖨 UPenn Proxy 🎽 Inbox (10) - yashpa			_			
apollo			Docker Version Co-Driv	er Mute	Mkz Standard Debug	vehicle	Gomentum
nn							
					100 C		O Brake 0%
Tasks			CONTRACTOR OF THE OWNER				km/h Accelerator 0%
				(a) (mail	2401000		
4-					(10.107 emk) (20.107) (20.107) (20.107) (20.107)		
Module							
Controller			EFER 1		~~~		
			FF7			J-T-	NO SIGNAL UNKNOWN
			toto.				
Layer Menu							
\square							
Route							
Editing			XI				
Г <u>-</u> Л							
Qu	ick Start ch = Con tract FA8750-18-C-0101	Others	_ Modi	lle Delay		Console	
Data	Setup	Reset Backend Da	ta Cha		-	You haven't selected a veh	nicle yet! 09:29:20
Recorder			Con		00:00.000	Nou haven't colorited a veh	09-20-14

Results: How well do the trajectories match?

Green – AV real Blue – AV sim

Orange – Ped real Yellow – Ped sim

S1 Run 2

F1 Run 1 Fundamental Research - Contract FA8750-18-C-0101

Other Contributions

S. A. Seshia

Verified Human-Robot Collaboration

Learning Specifications from Demonstrations, Interaction-Aware Control, etc. [IROS 2016, NeurIPS 2018, CAV 2020]

Run-Time Assurance

SOTER framework based on Simplex architecture [DSN 2019]

Counterexample-Guided Retraining

Boeing research automated taxiing system Used Scenic and VerifAI to find failures and retrain to eliminate [CAV 2020]

Conclusion: Towards Verified AI/ML based Autonomy

Challenges			Core Principles			
1.	Environment (incl. Human) Modeling	\rightarrow	Data-Driven, Introspective, Probabilistic Modeling			
2.	Specification		Start with System-Level Specification, then Component Spec (robustness,)			
3.	Learning Systems Complexity	\longrightarrow	Abstraction, Semantic Representation, and Explanations			
4.	Efficient Training, Testing, Verification	\longrightarrow	Compositional Analysis and Semantics- directed Search/Training			
5.	Design for Correctness	\longrightarrow	Oracle-Guided Inductive Synthesis; Run-Time Assurance			

Thank you!

S. A. Seshia, D. Sadigh, S. S. Sastry. *Towards Verified Artificial Intelligence*. July 2016. https://arxiv.org/abs/1606.08514.