

MARJORY S. BLUMENTHAL, LAURA FRAADE-BLANAR, RYAN BEST, J. LUKE IRWIN

Safe Enough

Approaches to Assessing Acceptable Safety for Automated Vehicles

Approaches to Assessing + Communicating About AV Safety

Marjory S. Blumenthal Senior Policy Researcher RAND Corporation

Builds on Measuring Automated Vehicle Safety: Forging a Framework

- Combine measurements into a framework
 - In settings (simulation, closed courses, public roads)
 - At stages (development, demonstration, deployment)
- Leading (pre-crash) measures are key
- Roadmanship concept: Drive safely without creating—and respond well to—hazards

Measuring Automated Vehicle Safety

Forging a Framework

Laura Fraade-Blanar, Marjory S. Blumenthal, James M. Anderson, Nidhi Kalra

Issues for Assessing + Communicating

- Three principal approaches:
 - Measurement
 - Processes
 - Thresholds
- Asymmetric information context developers know the most
- Diverse stakeholders and audiences

Measurement

- Gold standard but elusive
 - Lack of lagging measures
- Reliance on immature leading measures
 - Roadmanship concept is implicit in ongoing efforts
 - Candidate-measure scorecard consider ability to validate, applicability to different crash types, incentive effects, ...
- Nonuniformity frustrates stakeholders

Leading Measure Challenge Example

Braking Event	Danger Present	Danger Absent	
Hard braking occurred	A: appropriate reaction	B: false positive	
No hard braking	C: false negative (crash)	D: appropriate avoidance	

© RAND Corporation

Processes

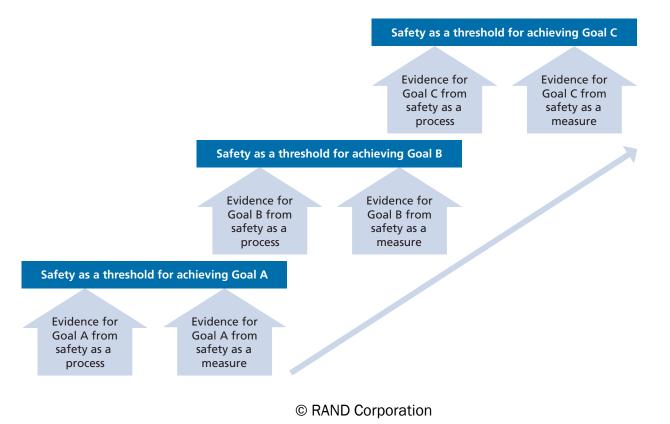
- Compensate for measurement weaknesses
- Indicators of developer attention to safety
 - AV response to unanticipated circumstances?
- Different forms:
 - Compliance with regulation (*limited*)
 - Implementation of technical standards (growing)
- Cross-cutting: safety cases and safety culture
- May not be transparent—internal, proprietary

Thresholds— Quantitative or

Qualitative

- 1) Human driving comparison
 - Intuitive, sought-after
 - Average v. better or "safe" human driver
 - ODD-specific (but data dearth)
- 2) Automated driving performance
 - Driving test +/-
 - ALARA/ALARP
 - "Positive trust balance"
- 3) Absolute goal
 - Vision Zero +/-
 - GAMAB/MEM
 - Life is full of risk

Threshold Comparison


Threshold	Conceptually	Functionally
Human drivers	Strong	Weak
ADS technology performance	In development	In development
Absolute goals	Weak	Strong

Slide 8

No One Assessment Approach Suffices

- Approaches complement, support, interact
- Continuing progress staircase-like

Slide 9

Communicating About Safety

- Broad agreement on challenge
 - Public trust
- Risk perception
 - Heuristics, biases
 - Perception of control
 - Personal experience
 - Quantitative savvy
- Affect heuristic
 - Perceptions \rightleftharpoons Emotions
 - Exposure and habituation (e.g., ADAS)
- Experience elsewhere
 - Human error > machine error
 - Assume safety thresholds met

Communicating Approaches

Process or Measure		Threshold		Statement
AV hard-braking rate	is	below 1 per million VMT	as	communicated by AV developer
AV fatal crash rate per 100 million VMT	is	lower than that of the average human driver	as	communicated by government statistics
AV safety case demonstrates meeting safety standards	showing that	the technology is as safe as possible	as	communicated by a safety advocacy group

© RAND Corporation

American Life Panel Survey

- Standing consumer panel
- Responses to patterns of info from 8 different sources
- Relative influence

Source of evidence	Evidence shows that AVs are safe
Average AV crash rate	i der i der
Average near-miss crash rate	#! #!
Federal vehicle requirements	# •
Federal government official position	#! #!
State or local government official position	i der i der
AV company's official position	No information
Safety advocacy group's official position	i der i der
Friends or family members	
© RAND (Corporation

Explicit Rankings v. Implicit Influence

Safety Message Source

	Regression Coefficient (implicit)	Rank Order (explicit)
1	AV crash rate	AV crash rate
2	State or local government position	Safety advocacy group position
3	Federal government position	Federal vehicle requirements
4	AV near-miss rate	AV near-miss rate
5	Federal vehicle requirements	Federal government position
6	Safety advocacy group	State or local government position
7	Friends and family members	Friends and family members
8	AV company position	AV company position

NOTE: Order of sources measured implicitly determined by standardized regression coefficients (see Table A.1) from the social judgment analysis. Order of sources measured explicitly determined by mean ranking from the rank-order task.

© RAND Corporation

Special Survey Showed Influence of, Preference for Info Sources

Most compelling

- AV crash rates (but elusive as a measure)
- Info from state and local government
- Information from the federal government
- AV near-miss rates

Most effective

- Data-driven, immediately understandable and relevant (AV crash rates)
- State, local, and federal government preferred to companies, friends + family

No Single Message Suffices

- Populations have different needs
 - Different perceptions of risks, benefits
 - Different views of source credibility
- Promote AV benefits, don't talk only about risks and costs
- Use simple, data-driven statements from trusted sources

Safe Enough Recommendations

Developers

- Use a mix of approaches for safety assessment
- Continue to advance leading measures, incl. roadmanship
- Collaborate on templates for publicly assessible versions of safety cases

Government

- Support research into (and data about) human drivers to enable good ODDspecific comparisons
- Support research into safety assessment options, especially measurements

Bring AVs into communities

Questions?

Marjory@RAND.org

