Safety in Cooperative Autonomous Systems Vision of Dynamic Safety Management

Dr. Daniel Schneider

Ms. Sc. Emilia Cioroaica

© Fraunhofer IESE

Fraunhofer IESE

The institute for software and systems engineering methods

- Founded in 1996, headquartered in Kaiserslautern
- Over 155 full-time equivalents (FTEs)
- Our most important business areas:
 - Automotive and Transportation Systems
 - Automation and Plant Engineering
 - Health Care

- Information Systems
- Energy Management
- E-Government

ESQ – Focus on Safety

Model-based Safety Engineering

- Hazard- and Riskanalyses
- Safetyanalyses (FMEA, FTA, CFT etc.)
- Safety Concepts
- Tools and methods (in particular **safeTbox**)

Engineering of Safety-related Solutions; e.g.:

- Controlling critical functions with mobile devices
- Safe CE(/NAC ...) Hardware

Research Topics

- Modular Certification
- Runtime Certification in open adaptive systems
- Security for Safety
- Safety of autonomous systems
- Automated interference analyses and Embedded apps

Examples of recent industry projects (since 2016)

Innovative safety Architectures

SGS

SAAR

--- Our Vision of Dynamic Safety Management ----

Smart everything – Diverse (yet interlinked) domains, similar challenges

A networked and automated world

Making this vision reality requires:

Autonomy – humans incapable to manually control this

Openness – systems need to be open to exchange information cooperate

and

The Challenge – From an Engineering Point of View

A Solution – The Principle Idea

- 1. Monitor context
- 2. Reflect context and state in runtime models
- 3. "Artifical Onboard Dependability Engineer" decides what needs to be done in a concrete situation based on runtime models and adaptation models (assurability)
- 4. Adapt System (fault-tolerance, graceful degradation, fail-operational)
- → Dynamic Dependability Management
- → Resilient Architecture

Fraunhofer

Dependability Awareness

Dependability Awareness

Dependability Awareness

How to: (runtime) models for dependability management

ConSerts Overview

ConSerts Overview – Dynamic Hierarchies

ConSerts Overview – Safety Modularization

ConSerts Overview – SM@RT

ConSerts Overview – System Model

ConSerts Overview – Engineering Backbone

How to: (runtime) models for dependability management

Specification of ConSerts

For each potential safety guarantee of each provided service, there is a separate ConSert Tree (CST)

🗾 Fraunhofer

Matching and Mapping of Guarantees and Demands

Matching of Guarantees and Demands

• When is a demand satisfied by a guarantee?

--- The DEIS Project ---

DEIS Project: Digital Dependability Identity

1/26/19 © Fraunhofer

🗾 Fraunhofer

26

DDI Meta-Model (Open Dependability Exchange (ODE))

🗾 Fraunhofer

 $\ensuremath{\mathbb{C}}$ Fraunhofer

ODE v1

SACM 2.0 metamodel

Development Time DDI Use Case

--- (Do Not) Trust in Ecosystems---

TOWARDS BUILDING TRUST

- Ecosystems are not formed from scratch,
 - Download of Smart Agents
 - Verification of Smart Agents
 - Requires code execution on the ECU
- Evaluation of DT of the Control Algorithm
 - Build Reputation and Trust based on DT evaluation

- Agent contains malicious code that causes car to run into another car with low probability.
- Systematic testing is not enough, verification through multiple execution of behavior is needed.

METHOD FOR BUILDING TRUST

Technical Challanges

Input values	Source of problem	Real World	Virtual World
Sensor Data	1.Frequency		
	2. Value Range		
Can Bus Signals	3. Noise	my	
			m
			38

Technical Challanges

Deployment of SWCuE linked to	Source of problem	Real World	Virtual World
System Architecture	4. Abstraction Problem	SWCuE	SWCuE

39

I CUIIICAI CHAHAIIges							
Behavior of SWCuE linked to	Source of problem	Real World	Virtual World				
Software Behavior	5. Retain state						
		2 times peed Read acc.	20 times Increase speed Read acc.				
	6. Monitor the passing of time						
	7. Observe the passing of time	time is passing linearly	time is not passing linearly				

Technical Challanges

© Fraunhofer

40

BUILD TRUST IN ECOSYSTEMS AN COMPONENTS

- Concept for Platform that enables building of trust :
 - Trust the Virtual Evaluation.

Output Processor:

outputs {frequency, value range of data, noise signals}

Monitor :

detect suspicious interaction patterns.

The Software Wrapper

assures that the behavior of software component

is not able to retain the state,

neither to monitor or observe the passing of time.

Components that enables computation of reputation.

Thank you for your interest

