
https://seL4.systems

Gernot Heiser | Gernot.Heiser@data61.csiro.au | @GernotHeiser

WG10.4 Winter’19, Champéry, CH

Protecting Autonomous Operation
With A High-Assurance OS

© 2019 Gernot Heiser2 | Protecting Autonomous Operation, WG10.4 Winter'19

© 2019 Gernot Heiser

Military-Grade Autonomous System?

3 | Protecting Autonomous Operation, WG10.4 Winter'19

Hacked within 2 weeks by
professional pen-testers!

No safety without
cyber-security!

© 2019 Gernot Heiser

DARPA HACMS: Protected Autonomy

4 | Protecting Autonomous Operation, WG10.4 Winter'19

Retrofit
existing
system!

Retrofit
existing
system!

Develop
technology

Unmanned Little Bird (ULB)

Autonomous
Truck

© 2019 Gernot Heiser

Outline
1. seL4 Introduction

2. Mixed-criticality support

3. Security enforcement by architecture

4. High-assurance user-level components

5 | Protecting Autonomous Operation, WG10.4 Winter'19

Foundation:
seL4 Microkernel

© 2019 Gernot Heiser

Foundation for Security

Protecting Autonomous Operation, WG10.4 Winter'197 |

seL4: The world’s only
operating-system kernel with

provable security enforcement
(incl. memory protection)

seL4: The world’s
fastest microkernel

seL4: The world’s
only protected-mode OS

with complete, sound
timeliness analysis

Open Source

© 2019 Gernot Heiser

Assurance Proof Chain

Protecting Autonomous Operation, WG10.4 Winter'198 |

Abstract
Model

Integrity

Pro
of

C Imple-
mentation

Proof

Confidentiality Availability

Binary code

P
ro

o
f

P
ro

o
f

P
ro

o
f

Functional
correctness

Isolation
properties

Translation
correctness

Exclusions (in progress):
• Initialisation

• MMU & caches

• Multicore

• Timing Channels
Worst-case

execution time

© 2019 Gernot Heiser

A Microkernel is not an OS

Protecting Autonomous Operation, WG10.4 Winter'199 |

Processor

Device
Driver

Device
Driver

Device
Driver

NW
Stack

Device
Driver

Device
Driver

File
System

Process
Mgmt

Memory
Mgmt

App
App

App

VM

Linux

AppAppApp

Strong
Isolation

Device drivers, file systems, crypto,

power management, virtual-machine

monitor are all usermode processes

IPC

Controlled
Communication

VMM

Microkernel = context-switching engineMicrokernel

Mixed-Criticality Scheduling:
Enforcing Temporal Integrity

© 2019 Gernot Heiser

Integration Challenge: Mixed Criticality

Runs every 100 ms

for few millisecods

Runs frequently but for

short time (order of µs)

Control

loop

Sensor

readings

NW

driver

NW

interrupts

NW driver must preempt control loop
• … to avoid packet loss

• Driver must run at high prio

• Driver must be trusted not to monopolise CPU

Protecting Autonomous Operation, WG10.4 Winter'1911 |

© 2019 Gernot Heiser

Integration Challenge: Sharing

Critical
Less

critical

Vehicle
Control

NavigationShared
Data

Vehicle control
must see
consistent state

Protecting Autonomous Operation, WG10.4 Winter'1912 |

Updates

© 2019 Gernot Heiser

Sharing Through Resource Server

Protecting Autonomous Operation, WG10.4 Winter'1913 |

Control
P1 Server

PSNavig.
P2

Single-threaded,
guarantees
atomicity

Communication
endpoint (port)

Who pays for
server time?

© 2019 Gernot Heiser

Scheduling Contexts: Time Caps
Classical thread attributes
• Priority
• Time slice

New thread attributes
• Priority
• Scheduling context capability

Protecting Autonomous Operation, WG10.4 Winter'1914 |

Not
runnable

if null

Not
runnable

if null

Scheduling context object
• T: period
• C: budget (≤ T)

Limits CPU
access!

SchedControl capability
conveys right to assign
budgets (i.e. perform
admission control)

C = 2
T = 3

C = 250
T = 1000

Capability
for time

© 2019 Gernot Heiser

Only high-assurance OS
supporting mixed criticality
without sacrificing utilisation

Client1
P1

Shared Server

Protecting Autonomous Operation, WG10.4 Winter'1915 |

Server

Running
Running

Server runs on
client’s scheduling

context

Client2
P2

Scheduling-context capabilities: a principled, light-weight OS
mechanism for managing time [Lyons et al, EuroSys’18]

Will become
mainline

once verified

Client is
charged for

server’s time

Security Enforcement
by Architecture

© 2019 Gernot Heiser

ULB Architecture

17 | Protecting Autonomous Operation, WG10.4 Winter'19

Mission
Computer

Flight
Computer

Ne
tw

or
k

Ground
Station Link

Sensors

GPS

Camera

Motors

© 2019 Gernot Heiser

Incremental Cyber Retrofit

Protecting Autonomous Operation, WG10.4 Winter'1918 |

Trusted

Linux

Mission Manager

Ground Stn Link

Camera

GPSLocal NW

Crypto

Trusted

Linux

Mission Manager

Ground Stn Link

Camera

GPSLocal NW

Crypto

Virt-Mach Monitor

Trusted

Miss
Mgr

GS Lk

Cam-
eraGPS

Local
NW

Crypto

Linux

VMM

Linux

VMM

Original
Mission

Computer

© 2019 Gernot Heiser

Original
Mission

Computer

Incremental Cyber Retrofit

Protecting Autonomous Operation, WG10.4 Winter'1919 |

Trusted

Linux

Mission Manager

Ground Stn Link

Camera

GPSLocal NW

Crypto

Trusted

Miss
Mgr

GS Lk

Cam-
eraGPS

Local
NW

Crypto

Linux

VMM

Linux

VMM

Trusted

Mission
Mngr

Comms GPS
Local
NW

Crypto

Cam-
era

Linux

VMM

© 2019 Gernot Heiser

Incremental Cyber Retrofit

Protecting Autonomous Operation, WG10.4 Winter'1920 |

Trusted

Linux

Mission Manager

Ground Stn Link

Camera

GPSLocal NW

Crypto Trusted

Mission
Mngr

Comms GPS
Local
NW

Crypto

Cam-
era

Linux

VMM

[Klein et al, CACM, Oct’18]Original
Mission

Computer

Cyber-secure
Mission Computer

© 2019 Gernot Heiser

Issue: Primitives are Low-Level

Protecting Autonomous Operation, WG10.4 Winter'1921 |

Thread-ObjectA CNodeA1 EP Thread-ObjectBCNodeB1
CNodeA2

VSpace

VSpace

CSpace CSpace

Se
nd

Re
ce
ive

PDAPTA1
FRAME

FRAME

...

...

... ...

...

...CO
N
TE

XT

CO
N
TE

XT

A B

>50 kernel objects
for trivial program!

© 2019 Gernot Heiser

Non-Trivial But Simple System

Protecting Autonomous Operation, WG10.4 Winter'1922 |

© 2019 Gernot Heiser

Component Middleware: CAmkES

Protecting Autonomous Operation, WG10.4 Winter'1923 |
���������	
�������� �
������������������������ &9�#�$"

�2
-!�

3 ��
��������������
������
(�����������
�

3 ���*������������<$8(�����-������

3 ������������������(��������)���)����)�����

component

connector

interface
Higher-level abstractions of
low-level seL4 constructs

© 2019 Gernot Heiser

Simplified UAV Architecture

Protecting Autonomous Operation, WG10.4 Winter'1924 |

Radio
Driver

CAN
Driver

Data
Link

Crypto

Uncritical/
untrusted,
contained

Linux

Camera

Wifi

Security enforcement:
Linux only sees
encrypted data

© 2019 Gernot Heiser

Enforcing the Architecture

Protecting Autonomous Operation, WG10.4 Winter'1925 |

Architecture
specification
language

A

CNode EP CNode
CSpace CSpace

Se
nd

Re
ce
ive

... ...

CO
N
TE

XT

CO
N
TE

XT

VSpace

component
code+

CAmkES

capDL
glue
code

+ proof

initialised system + proof

+ proof
Thread
Object

Thread
Object

VSpace

A B

B

Low-level access rights

Radio
Driver

Crypto

CAN
Driver

Data
Link Uncritical/untrusted,

contained

Linux

Camera

Wifi

driver.c VMM.c

Compiler/
Linker

binaryinit.c

Conditions
apply

glue.c

[Klein et al, CACM’18]

© 2019 Gernot Heiser

Architecture Analysis

Protecting Autonomous Operation, WG10.4 Winter'1926 |

Binary

Analysis
Tools

G
enerate

Generate

Compile
CAmkES

Component
Description .h, .c

Glue
Code

Eclipse-
based IDE

Design AADL
Architecture Analysis &
Description Language

Safety ✔Open-source AADL tools
from Rockwell-Collins

High Assurance Code
Beyond the Kernel

© 2019 Gernot Heiser

Beyond the Kernel

Critical
control

Uncritical/
untrusted

Linux

AppsAppsApps

Device
driver

NW
stack

10 kLOC
11 py

100
kLOC?

5 kLOC?

1 kLOC?

File
system

10 kLOC?

Protecting Autonomous Operation, WG10.4 Winter'1928 |

© 2019 Gernot Heiser

Cogent: Code & Proof Co-Generation

• Restricted, purely functional
systems language

• Type- and memory safe, not
managed

• Turing incomplete
• Case-studies: BilbyFs, ext2,

F2FS, VFAT

[O’Connor et al, ICFP’16;
Amani et al, ASPLOS’16]

Abstract Spec
Isabelle/HOL

Pr
oo

f
Pr

oo
f

ADTs (C)C

Cogent

Pr
oo

f

Auto-
matic

Manual,
one-off

Manual,
equational

Protecting Autonomous Operation, WG10.4 Winter'1929 |

Aim: Reduce cost of
verified systems code

© 2019 Gernot Heiser

BilbyFS
functions

Effort Isabelle
LoP

Cogent
SLoC

Cost
$/SLoC

LoP/
SLOC

isync()
iget()
library

9.25
pm

13,000 1,350 150 10

sync()-
specific

3.75
pm

5,700 300 260 19

iget()-
specific

1 pm 1,800 200 100 9

seL4 12 py 180,000 8,700 C 350 20

Manual Proof Effort

30 | Protecting Autonomous Operation, WG10.4 Winter'19

BilbyFS
functions

Effort Isabelle
LoP

Cogent
SLoC

Cost
$/SLoC

isync()
iget()
library

9.25
pm

13,000 1,350 150

sync()-
specific

3.75
pm

5,700 300 260

iget()-
specific

1 pm 1,800 200 100

seL4 12 py 180,000 8,700 C 350

BilbyFS
functions

Effort Isabelle
LoP

Cogent
SLoC

Cost
$/SLoC

isync()
iget()
library

9.25
pm

13,000 1,350 150

sync()-
specific

3.75
pm

5,700 300 260

iget()-
specific

1 pm 1,800 200 100

BilbyFS: 4,200 LoC Cogent

© 2019 Gernot Heiser

Dependable And Affordable?

31 | Protecting Autonomous Operation, WG10.4 Winter'19

Fully
automated

Work in progress:
• Language expressiveness
• Reduce boiler-plate code
• Network stacks
• Device drivers

Dependability-cost tradeoff:
• Reduced faults through safe language
• Property-based testing (QuickCheck)
• Model checking
• Full functional correctness proof???

Abstract
Spec

Pr
oo

f?
Pr

oo
f

C

Cogent

Spec
reuse!
Spec

reuse!

© 2019 Gernot Heiser

Application to Autonomous Cars

Protecting Autonomous Operation, WG10.4 Winter'1932 |

Arm v8 core

Microkernel

Arm v8 core Arm v8 core Arm v8 core

CAN
driver

Sensor
driver

Camera
driver

Inference
engine

Virtual Machine

SMP Linux

Logging

Sensor
Fusion

Comms

ML Trusted

Microkernel

Redundancy

Cogent

© 2019 Gernot HeiserProtecting Autonomous Operation, WG10.4 Winter'1933 |

Trustworthy Systems Team

https://sel4.systems

Security is no excuse for poor performance!

Gernot Heiser | Gernot.Heiser@data61.csiro.au | @GernotHeiser

Thank you

• Add Business Unit/Flagship Name

© 2019 Gernot Heiser

Abstract
Model

Integrity

Proof

C Imple-
mentation

Proof

Confidentiality Availability

Binary code

Pr
oo

f
Pr

oo
f

Pr
oo

f

Verification Guarantees
Verification rules out unspecified behaviour:
• Buffer/stack overflow
• Null-pointer dereference
• Code injection
• Use after free
• Memory leaks
• Kernel crash
• Privilege escalation
• Covert storage channels, …

… as long as the assumptions are satisfied!

Protecting Autonomous Operation, WG10.4 Winter'1935 |

Verification forces you to
make assumptions explicit!

Reason many bugs
are found just from
writing the spec!

© 2019 Gernot Heiser

Verification Assumptions
1. Hardware behaves as expected

– Formalised hardware-software contract (ISA)
– Hardware implementation free of bugs, Trojans, …

2. Spec matches expectations
– Can only prove “security” if specify what “security” means
– Spec may not be what we think it is

3. Proof checker is correct
– Isabel/HOL checking core that validates proofs against logic

Protecting Autonomous Operation, WG10.4 Winter'1936 |

With binary verification do not
need to trust C compiler!

Abstract
Model

Integrity

Proof

C Imple-
mentation

Proof

Confidentiality Availability

Binary code

Pr
oo

f
Pr

oo
f

Pr
oo

f

© 2019 Gernot Heiser

Present Verification Limitations
• Not verified boot code
• Assume it leaves kernel in safe state

• Caches/MMU presently modeled at high level / axiomised
• This is in progress of being fixed

• Not proved any temporal properties
• Presently not proved scheduler observes priorities,

properties needed for RT
• Worst-case execution-time analysis applies only to dated ARM11/A8 cores
• No proofs about timing channels

Protecting Autonomous Operation, WG10.4 Winter'1937 |

Abstract
Model

Integrity

Proof

C Imple-
mentation

Proof

Confidentiality Availability

Binary code

Pr
oo

f
Pr

oo
f

Pr
oo

f

© 2019 Gernot Heiser

Feature Core
spec to C

C to
binary

Security
enforcem.

Mixed-
criticality

Virtual
machines

Multicore

Arm 32 done done done in progr. done in progr.
Arm 64 unfunded in progr. unfunded unfunded unfunded ???
x64 done no plans no plans easy? no plans ???
R-V 64 in progr. in progr. unfunded in progr. unfunded ???

Protecting Autonomous Operation, WG10.4 Winter'19

Verification Matrix

38 |

• Security: CIA enforcement proofs
• Mixed criticality: advanced real-time support with temporal isolation;

This will replace the mainline kernel once verified
• Virtual machines: verified use of hardware virtualisation support

