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Military-Grade Autonomous System?
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Hacked within 2 weeks by 
professional pen-testers!

No safety without 
cyber-security!
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DARPA HACMS: Protected Autonomy
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Retrofit 
existing 
system!

Retrofit 
existing 
system!

Develop 
technology

Unmanned Little Bird (ULB)

Autonomous 
Truck
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Outline
1. seL4 Introduction

2. Mixed-criticality support

3. Security enforcement by architecture

4. High-assurance user-level components
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Foundation:
seL4 Microkernel
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Foundation for Security
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seL4: The world’s only
operating-system kernel with 

provable security enforcement 
(incl. memory protection)

seL4: The world’s 
fastest microkernel

seL4: The world’s 
only protected-mode OS 

with complete, sound 
timeliness analysis

Open Source
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Assurance Proof Chain
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Functional 
correctness

Isolation 
properties

Translation 
correctness

Exclusions (in progress):
• Initialisation

• MMU & caches

• Multicore

• Timing Channels
Worst-case 

execution time
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A Microkernel is not an OS
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Processor

Device
Driver

Device
Driver

Device
Driver

NW
Stack

Device
Driver

Device
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System
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Memory
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App
App

App

VM

Linux
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Strong 
Isolation

Device drivers, file systems, crypto, 

power management, virtual-machine 

monitor are all usermode processes

IPC

Controlled 
Communication

VMM

Microkernel = context-switching engineMicrokernel



Mixed-Criticality Scheduling:
Enforcing Temporal Integrity
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Integration Challenge: Mixed Criticality

Runs every 100 ms

for few millisecods

Runs frequently but for 

short time (order of µs) 

Control 

loop

Sensor

readings

NW 

driver

NW

interrupts

NW driver must preempt control loop
• … to avoid packet loss

• Driver must run at high prio

• Driver must be trusted not to monopolise CPU
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Integration Challenge: Sharing

Critical
Less 

critical

Vehicle 
Control

NavigationShared
Data

Vehicle control 
must see 
consistent state
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Updates
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Sharing Through Resource Server
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Control
P1 Server

PSNavig.
P2

Single-threaded,
guarantees
atomicity

Communication
endpoint (port)

Who pays for 
server time?
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Scheduling Contexts: Time Caps
Classical thread attributes
• Priority
• Time slice

New thread attributes
• Priority
• Scheduling context capability
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Not 
runnable 

if null

Not 
runnable 

if null

Scheduling context object
• T: period
• C: budget (≤ T)

Limits CPU 
access!

SchedControl capability 
conveys right to assign 
budgets (i.e. perform 
admission control)

C = 2
T = 3

C = 250
T = 1000

Capability 
for time
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Only high-assurance OS 
supporting mixed criticality 
without sacrificing utilisation

Client1
P1      

Shared Server
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Server

Running
Running

Server runs on 
client’s scheduling 

context

Client2
P2      

Scheduling-context capabilities: a principled, light-weight OS 
mechanism for managing time [Lyons et al, EuroSys’18]

Will become 
mainline 

once verified

Client is 
charged for 

server’s time



Security Enforcement
by Architecture
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ULB Architecture
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Incremental Cyber Retrofit
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Original 
Mission

Computer

Incremental Cyber Retrofit
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Incremental Cyber Retrofit
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Trusted

Linux
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Linux

VMM

[Klein et al, CACM, Oct’18]Original 
Mission

Computer

Cyber-secure 
Mission Computer
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Issue: Primitives are Low-Level
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Thread-ObjectA CNodeA1 EP Thread-ObjectBCNodeB1
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>50 kernel objects 
for trivial program!
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Non-Trivial But Simple System
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Component Middleware: CAmkES

Protecting Autonomous Operation, WG10.4 Winter'1923 |
���������	
�������� �
������������������������ &9�#�$"

�2
-!�

3 ��
��������������
������
(�����������
�

3 ���*������������<$8(�����-������

3 ������������������(��������)���)����)�����

component

connector

interface
Higher-level abstractions of 
low-level seL4 constructs
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Simplified UAV Architecture
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Radio
Driver

CAN
Driver

Data
Link

Crypto

Uncritical/
untrusted,
contained

Linux

Camera

Wifi

Security enforcement: 
Linux only sees 
encrypted data
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Enforcing the Architecture 
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[Klein et al, CACM’18]
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Architecture Analysis
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Binary

Analysis
Tools

G
enerate

Generate

Compile
CAmkES

Component
Description .h, .c

Glue
Code

Eclipse-
based IDE

Design AADL
Architecture Analysis &
Description Language

Safety ✔Open-source AADL tools 
from Rockwell-Collins



High Assurance Code
Beyond the Kernel
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Beyond the Kernel

Critical
control

Uncritical/
untrusted

Linux

AppsAppsApps

Device
driver

NW
stack

10 kLOC
11 py

100 
kLOC?

5 kLOC?

1 kLOC?

File 
system

10 kLOC?
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Cogent: Code & Proof Co-Generation

• Restricted, purely functional 
systems language

• Type- and memory safe, not 
managed

• Turing incomplete
• Case-studies: BilbyFs, ext2, 

F2FS, VFAT

[O’Connor et al, ICFP’16; 
Amani et al, ASPLOS’16]

Abstract Spec
Isabelle/HOL
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ADTs (C)C

Cogent
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Auto-
matic

Manual,
one-off

Manual,
equational
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Aim: Reduce cost of 
verified systems code
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BilbyFS
functions

Effort Isabelle
LoP

Cogent
SLoC

Cost
$/SLoC

LoP/ 
SLOC

isync()
iget()
library

9.25 
pm

13,000 1,350 150 10

sync()-
specific

3.75 
pm

5,700 300 260 19

iget()-
specific

1 pm 1,800 200 100 9

seL4 12 py 180,000 8,700 C 350 20

Manual Proof Effort
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BilbyFS: 4,200 LoC Cogent
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Dependable And Affordable?
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Fully 
automated

Work in progress:
• Language expressiveness
• Reduce boiler-plate code
• Network stacks 
• Device drivers

Dependability-cost tradeoff:
• Reduced faults through safe language
• Property-based testing (QuickCheck)
• Model checking
• Full functional correctness proof???

Abstract 
Spec
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f

C

Cogent

Spec
reuse!
Spec

reuse!
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Application to Autonomous Cars
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Arm v8 core

Microkernel

Arm v8 core Arm v8 core Arm v8 core

CAN
driver

Sensor
driver
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Inference 
engine

Virtual Machine

SMP Linux

Logging

Sensor
Fusion

Comms

ML Trusted

Microkernel

Redundancy

Cogent



© 2019 Gernot HeiserProtecting Autonomous Operation, WG10.4 Winter'1933 |

Trustworthy Systems Team
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Security is no excuse for poor performance!

Gernot Heiser | Gernot.Heiser@data61.csiro.au | @GernotHeiser

Thank you

• Add Business Unit/Flagship Name
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Verification Guarantees
Verification rules out unspecified behaviour:
• Buffer/stack overflow
• Null-pointer dereference
• Code injection
• Use after free
• Memory leaks
• Kernel crash
• Privilege escalation
• Covert storage channels, …

… as long as the assumptions are satisfied!
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Verification forces you to 
make assumptions explicit! 

Reason many bugs 
are found just from 
writing the spec!
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Verification Assumptions
1. Hardware behaves as expected

– Formalised hardware-software contract (ISA)
– Hardware implementation free of bugs, Trojans, …

2. Spec matches expectations
– Can only prove “security” if specify what “security” means
– Spec may not be what we think it is

3. Proof checker is correct
– Isabel/HOL checking core that validates proofs against logic
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With binary verification do not
need to trust C compiler!
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Present Verification Limitations
• Not verified boot code
• Assume it leaves kernel in safe state

• Caches/MMU presently modeled at high level / axiomised
• This is in progress of being fixed

• Not proved any temporal properties
• Presently not proved scheduler observes priorities,

properties needed for RT
• Worst-case execution-time analysis applies only to dated ARM11/A8 cores
• No proofs about timing channels
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Feature Core
spec to C

C to 
binary

Security
enforcem.

Mixed-
criticality

Virtual
machines

Multicore

Arm 32 done done done in progr. done in progr.
Arm 64 unfunded in progr. unfunded unfunded unfunded ???
x64 done no plans no plans easy? no plans ???
R-V 64 in progr. in progr. unfunded in progr. unfunded ???
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Verification Matrix

38 |

• Security: CIA enforcement proofs
• Mixed criticality: advanced real-time support with temporal isolation;

This will replace the mainline kernel once verified
• Virtual machines: verified use of hardware virtualisation support


