
Fault-Injection on a Haptic Rendering 
Algorithm in the Raven Surgical Robot
Keywhan Chung, Xiao Li, Zbigniew T. Kalbarczyk, Ravishankar K. Iyer, and Thenkurussi Kesavadas
University of Illinois at Urbana-Champaign



 Surgical robot widely adopted in medicine
 Raven-II: an open-architecture surgical robot

– Built for research purposes
– Based on open standards (Linux, ROS)
– Hence, easy to add/upgrade/swap components and advance relevant technologies

 How about reliability and security?
– What problems can the robot and its modules face?
– How robust against them?
– Any potential security threats?

Introduction and Motivation

2

Evaluation through fault injection
- Sample application: Haptic Rendering Module designed for Raven-II
- Algorithm heavily rely on data from the image sensor
- Inject faults into the message from “image sensor node” to “control algorithm”



Raven-II

Environment Setup of Raven with the Haptic Rendering Engine

roscore
sensor
Kinect

omni
_client

rviz

ROS message subscription through a TCP connection
ROS message publication through a TCP connection
H/W - ROS connection

omni_force
omni_incr

kinect/BGR

OMNI haptic device
for user input

KINECT 
image sensor

visualized 
simulation

RAVEN-II

BGR
of operating 

table

IR depth 
of operating 

table

Force feedback

Operator 
movement

+ Haptic Rendering Engine

kinect/Depth



Fault Injection Setup

4

roscore

kinectSensor

omni_client

rviz

Injector
breakpoint: 
sensorKinect.cpp:300
command: 
set img_msg_d.data[X] 
= img_msg_d.data[X-shift]
…

Fault # 1
GDB through 
TCP connection

sensorKinect.cpp
...
while (ros::ok()){

cap.grap(); // capture a frame from the image sensor
cap.retrieve(bgrImage, CV_CAP_OPENNI_BGR_IMAGE);
cap.retrieve(bgrImage, CV_CAP_OPENNI_DEPTH_MAP);
…
// convert the image to a ROS message
img_bridge_d.toImageMsg(img_msg_d);
…
// publish the ROS message to roscore
pub2.publish(img_msg_d);
…

}
…

img_msg_d.data[X-shift]

……

img_msg_d.data[X]

Memory

0

1500

breakpoint



 Reliability Issue: Message can loose information during transition:
e.g., hardware failure, network problem, etc.

 Leads to loss of granularity
 Fault Model:

– Neutralize the depth of a portion of pixels chosen at random

Fault I: Loss of Granularity in Depth Map

5

1 1 1 0 0
1 1 1 0 0
1 1 1 0 0
0 0 0 0 0
0 0 0 0 0

0 1 1 0 0
1 0 1 0 0
1 1 0 0 0
0 0 0 0 0
0 0 0 0 0

Original Depth Map
(ground truth)

Corrupted Depth Map
(actual input for algorithm)



with Fault Injected

 In reality: no blockage at surface
– Damage underlying surface (e.g., patient tissue)
– Robot suffers a heavy load without notice

Fault I: Injection Result

6

Tip contact 
successfully 
rendered & 
blocked 
penetration

Rendered 
force feedback

without Fault Injected

Robot arm 
penetrated the 
object

Rendered 
force feedback 
(horizontal not 
vertical)



Fault II: Shifted Depth Map

7

1 1 1 0 0
1 1 1 0 0
1 1 1 0 0
0 0 0 0 0
0 0 0 0 0

Original Depth Map 
(ground truth)

 Security Threat: Attacker can manipulate the message w/ malicious intent

 Fault Model:
– Shift the memory contents as if the object has moved

0 0 1 1 1
0 0 1 1 1
0 0 1 1 1
0 0 0 0 0
0 0 0 0 0

Shifted Depth Map
(actual input for algorithm)

Object SHIFTED by 2 pixels?



with Fault Injected

Fault II: Injection Result

8

without Fault Injected

Object under 
operation rendered 
in 3D while 
operating table 
remaining flat

Volume added to 
table surface

Object under 
operation flattened 
(same depth level 
as table)

 If we also corrupted the BGR message,
can obfuscate the operator to think that the object is in a different location



 Using fault injection, 
demonstrated possibility of neutralizing a haptic feedback engine:

– Reliability Issue: hardware failure in image source or network issue
– Security Threat: intentional manipulation of input data

 Need validation of input source and detection of corruption

 Future Work:
– Advances in fault models
– Additional source of faults (e.g., corrupt the “omni_force” message)
– Vulnerabilities in applications and the ROS framework
– Protection against known faults

Conclusion

9


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9

