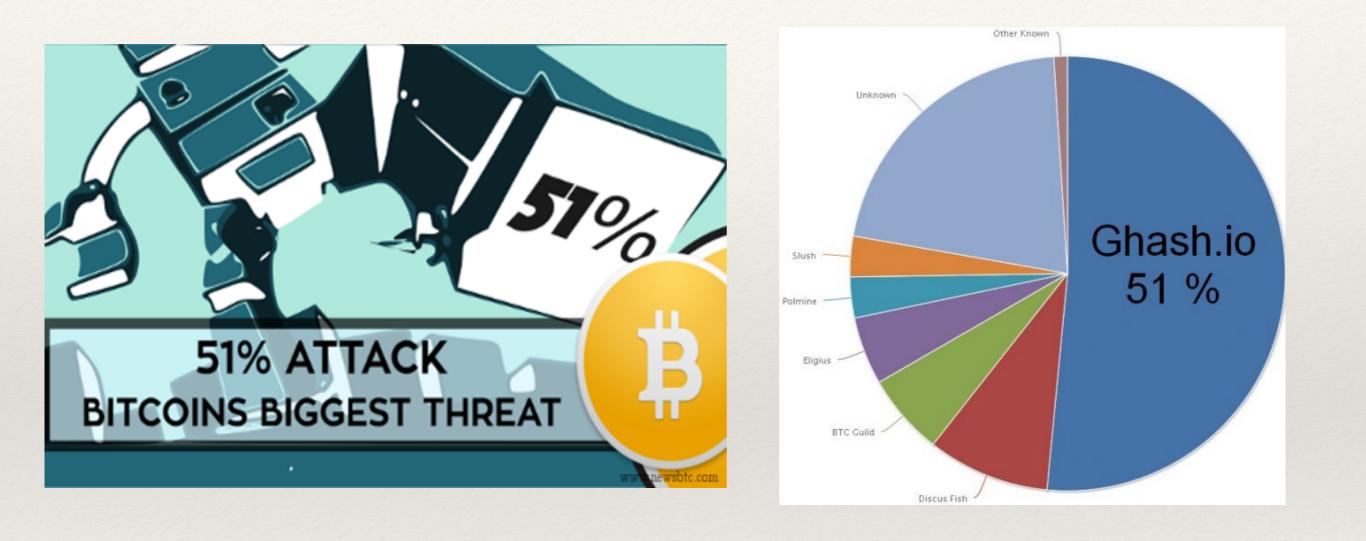


RepuCoin: Your reputation is your power

Jiangshan Yu


Joint work with David Kozhaya (*), Jérémie Decouchant, and Paulo Esteves-Veríssimo

SnT - Interdisciplinary Centre for Security, Reliability and Trust University of Luxembourg, Luxembourg (*) currently at ABB Research, CH

Reality is tough

In a permissionless blockchain, how to enforce, at least with a very high probability, that

malicious_nodes $\leq F$? ΣP malicious_nodes $\leq P_F$?

RepuCoin Overview

Main problems of PoW:

- Decision (voting) power is CPU power
- Instantaneous power
- can be gained **quickly**;
- vulnerable to flash attacks.

Rationality and maliciousness

- not clearly distinguished

PoW consensus is **probabilistic**

- forkable BC

Low (stochastic) resilience - vulnerable to selfish mining (>25%) and other attacks leveraging instantaneous power

Low Throughput:

- 7 TPS
- 1,000 TPS (ByzCoin)

Our solutions:

Decision (voting) power is reputation

- **Integrated** power (past performance)
- can only grow slowly with bounded rate;
- Not vulnerable to flash attacks.

Rationality and maliciousness

- separate protection measures

PoR consensus is deterministic

- novel weighted voting consensus algorithm
- non-forkable BC

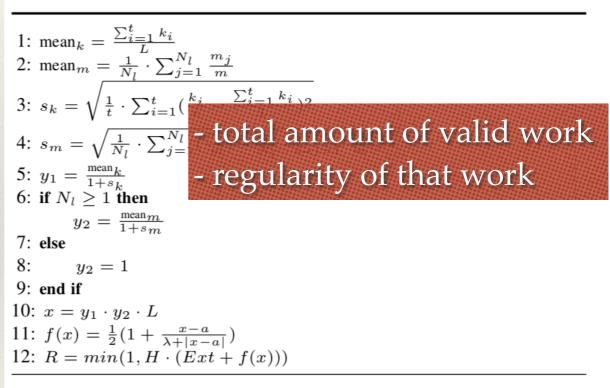
High (stochastic) resilience-Not vulnerable to instantan. power attacks-Non-rationality of infiltration attacks

High Throughput:

- (fast) PoR for committing transactions
- 10,000 TPS (256 Byte per TX)

The logic of RepuCoin in a nutshell

- SIT securityandtrust.lu CRITIX
- reputation-based weighted voting consensus is safe and live as long as relative decision power (given by reputation score) of attackers is below a defined threshold, fraction of the total
- max rate of decision power growth of any system participant is deterministic, bounded and known, imposed by the proof-ofreputation function
- * there is no rational economic model for infiltration attacks --- compared to the cost of attacking different systems
- Attacks attacks on liveness or safety still being possible, the network achieves very high stochastic robustness against them --- i.e., attack effort to reach network control compares very favorably to previous works
- * RepuCoin prevents all currently known attacks.



 Miners gain reputation slowly with a bounded rate by contributing to the blockchain

Algorithm 2 Reputation algorithm

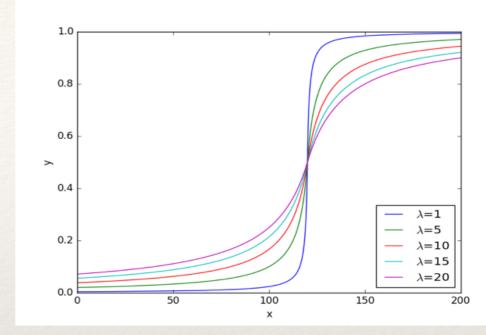
Input: L, $\{k_i\}_{i=1}^t$, $\{m_j\}_{j=1}^{N_l}$, m, c, a, and λ . Output: Reputation $R \in [0, 1]$ of the corresponding miner.

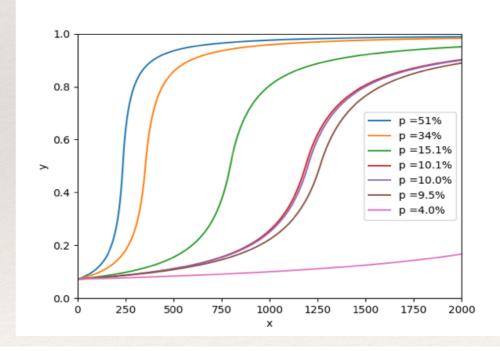
- Miners gain reputation slowly with a bounded rate by contributing to the blockchain
- 2. Top reputed miners dynamically form a consensus committee

- Miners gain reputation slowly with a bounded rate by contributing to the blockchain
- 2. Top reputed miners dynamically form a consensus committee
- The committee votes through reputation-based weighted voting protocol to pin keyblocks;
- 4. A randomly elected leader proposes microblocks to the committee for their approval;

· · · Key	block_hash _i		k	eyblock_hash _{i+1}	\[keyl	$block_hash_{i+2}$	5
prev_	_keyblock_hash	Ч	pre	ev_keyblock_hash	Ч	prev_	_keyblock_hash	۲
	Nonce _i			Nonce _{i+1}			Nonce _{i+2}	
	PK_i			PK_{i+1}			PK_{i+2}	
	R_i		R _{i+1}		R_{i+2}			
	K_sig_i			K_sig_{i+1}			K_sig_{i+2}	
sig_k	eyblock_agmnt _i	si	g_	keyblock_agmnt _{i+1}	V	sig_ke	yblock_agmnt _{i+2}	
	microblock_ha	ush _i		microblock_hash _{i+}	-1		microblock_has	\mathbf{h}_{j+2}
$H(K_sig$		<i>hi</i>)		$H(K_sig_i)$			$H(K_sig_{i+1}$)
	prev_microblock	k_hash		prev_microblock_has	sh		prev_microblock	hash
	TXs M_sig			TXs			TXs	
			M_sig				M_sig	
sig_microblock_agm]	sig_microblock_agm	nt		sig_microblock_a	gmnt

- Miners gain reputation slowly with a bounded rate by contributing to the blockchain
- 2. Top reputed miners dynamically form a consensus committee
- The committee votes through reputation-based weighted voting protocol to pin keyblocks;
- 4. A randomly elected leader proposes microblocks to the committee for their approval;
- 5. Mis-behaved miners will be punished, and they lose reputation





Reputation is your power

- i. **careful start**, through an initial slow increase;
- ii. potential for quick reward of mature participants, through fast increase in mid-life;
- iii. prevention of over-control, by slowincrease near the top

Reputation distribution of miners over time.

Time	[0, 0.2)	[0.2, 0.4)	[0.4, 0.6)	[0.6, 0.8)	[0.8, 1]
1 month	100%	-	-	-	-
6 months	64.7%	35.3%	-	-	-
1 year	21.8%	78.2%	-	-	-
2 years	9.6%	31.7%	38.1%	15.2%	-
3 years	2.7%	21.6%	19.5%	38.1%	15.2%
4 years	2.7%	19.1%	-	25%	53.2%
4 years	2.7%	15.1%	4%	17.9%	60.3%
20 years	0.4%	2.3%	-	3%	94.3%

Reputation is your power

Reputation-based incentives lead miners to work diligently and honestly

A successful miner

- 1. gets all mining rewards
- 2. shares transaction fees with a randomly selected leader, according to the reputation.
- gets >60 times better transaction fees than BTC, due to high throughput

Algorithm 1 Reward sharing algorithm

- **Input:** The sequence $\mathbb{M} = \{m_0, m_1, \dots, m_{n-1}\}$ of microblocks pinned in the (i-1)-th epoch, the signature K_sig_i contained in the *i*-th pinned keyblock, and the reputation R of the miner who created the (i-1)-th keyblock.
- **Output:** Two subsets $\mathbb{M}', \mathbb{M}'' \subseteq \mathbb{M}$ of microblocks, where transaction fees contained in \mathbb{M}' (resp. \mathbb{M}'') are allocated to the miner (resp. the leader) as reward.

```
1: i' = H(K\_sig_i) \mod n

2: k = 0

3: \mathbb{M}' = \emptyset

4: while k < R \cdot n do

5: j = i' + k \mod n

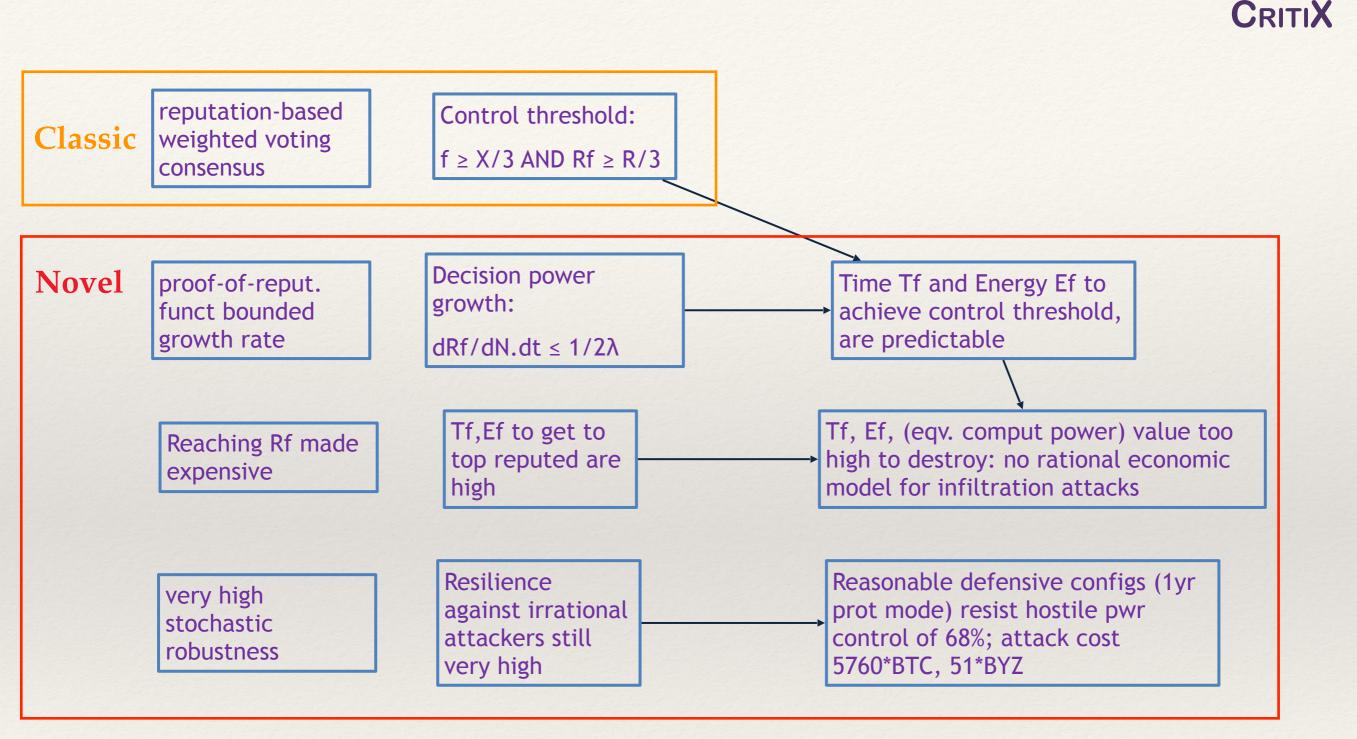
6: \mathbb{M}' = \mathbb{M}' \cup \{m_j\}

7: k = k + 1

8: end while

9: \mathbb{M}'' = \mathbb{M} \setminus \mathbb{M}'
```


securityandtrust.lu


The increase of any miner's voting power is bounded by "physics"!

$$\frac{dPd}{dN \cdot dt} = \frac{1}{2} \frac{\lambda}{(\lambda + |x - a|)^2} \leq \frac{1}{2\lambda}$$

 λ and *a* are system parameters, and *x* is defined in the reputation algorithm.

RECAP: The logic of RepuCoin in a nutshell

securityandtrust.lu

Security and Dependability:

The minimum cost of successfully attacking RepuCoin

Joining time \ Target	1 week	1 month	3 months	6 months
1 month	infeasible	45%	30%	27%
3 months	infeasible	90%	45%	33%
6 months	infeasible	infeasible	68%	45%
9 months	infeasible	infeasible	90%	54%
12 months	infeasible	infeasible	infeasible	68%
18 months	infeasible	infeasible	infeasible	91%
20 months	infeasible	infeasible	infeasible	infeasible

Security and Dependability:

The minimum cost of successfully attacking RepuCoin

	1	1	1	
Joining time \ Target	1 week	1 month	3 months	6 months
1 month	infeasible	BTC: *635;	BTC: *1271;	BTC: *2287;
		BYZ: *6	BYZ: *11	BYZ: *20
3 months	infeasible	BTC: *1270;	BTC: *1906;	BTC: *2795;
		BYZ: *11	BYZ: *17	BYZ: *25
6 months	infeasible	infeasible	BTC: *2880;	BTC: *3812;
			BYZ: *26	BYZ: *34
9 months	infeasible	infeasible	BTC: *3812;	BTC: *4574;
			BYZ: *34	BYZ: *41
12 months	infeasible	infeasible	infeasible	BTC: *5760;
				BYZ: *51
18 months	infeasible	infeasible	infeasible	BTC: *7708;
				BYZ: *69
20 months	infeasible	infeasible	infeasible	infeasible
	•	•	•	

Comparison

Attacks/Features	BitCoin	BitCoin-NG	ByzCoin	RepuCoin
Double spending attacks			×	×.
Selfish mining attack			1	×.
Bribery/flash attack	1		1	×
Eclipse attacks	1			
Non-forkable chain	1		A.	×
Liveness	R.	×.	1	×
Throughput	7 tps	?	1,000 tps	10,000 tps

The system is secure against this attack

 \bigcirc

The system is vulnerable to this attack

The system can prevent double spending, but its throughput maybe reduced.

256 Bytes/TX 13 nodes 1KB/Kblock 2 MB/Mblock

Thank you!

Jiangshan Yu

jiangshan.yu@uni.lu www.jiangshanyu.com

CRITIX @SnT, Critical and Extreme Security and Dependability

We're hiring bright post-docs and research associates willing to address these challenges!

J.Yu,D.Kozhaya,J.Decouchant,and P.Esteves-Verissimo, "Repucoin: Your reputation is your power," Cryptology ePrint Archive, Report 2018/239, 2018, <u>https://eprint.iacr.org/2018/239</u>.