Structured Overlay Networks for a New Generation of Internet Services

Amy Babay¹, Claudiu Danilov⁴, John Lane², Michal Miskin-Amir^{2,3}, Daniel Obenshain¹, John Schultz^{2,3}, Jonathan Stanton^{2,3}, Thomas Tantillo¹, and Yair Amir^{1,2,3}

¹Johns Hopkins University, ²LTN Global Communications, ³Spread Concepts LLC, ⁴Boeing Research & Technology

Distributed Systems and Networks Lab www.dsn.jhu.edu

The Internet Revolution

A single, multi-purpose, IP-based network

- The art of design end-to-end principle:
 - Keep it simple in the middle and smart at the edge
 - Simple middle: best effort packet switching, routing (intranet, internet)
 - Smart edge: end-to-end reliability, naming
 - Allowed dramatic success in adaptability and scaling over the past five decades
- Critical to society and standardized
 - The basic services are not likely to change

A New Generation of Internet Applications

• Communication patterns

- From point-to-point to point-to-multipoint to many-to-many
- High performance reliability
 - "Faster than real-time" file transfers
- Low latency interactivity
 - 100ms for VoIP
 - 80ms for interactive games
 - 65ms for remote manipulation, remote robotic surgery
- End-to-end dependability (availability, reliability)
 - From "e-mail" dependability to "phone service" dependability to "TV service" dependability – to "remote surgery" dependability
- System resiliency, security, and access control
 - From E-mail fault tolerance to financial transaction security to critical infrastructure (SCADA) intrusion tolerance

The Structured Overlay Vision

- Key idea: puts processing and context into the middle of the network, providing more flexibility and control
 - At overlay level
 - Underlying network maintains the end-to-end principle
- Three structured overlay principles:
 - Resilient network architecture
 - Overlay node software architecture with global state and unlimited programmability
 - Flow-based processing

Resilient Network Architecture

U.S. portion of a resilient structured overlay network with overlay nodes located in strategic datacenters

Overlay Node Software Architecture

- Structured overlay messaging system
 - Running overlay software routers (daemons) on top of UDP as user-level internet applications
 - Using commodity servers in strategic datacenters
- Easy-to-use programming platform
 - API similar to the socket API
 - Additional, seamless API through packet interception
- Deployable
 - Vision partially realized by the Spines messaging system (<u>www.spines.org</u>) and its derivatives

Overlay Node Software Architecture

- Global State
 - Possible due to the relatively small number of nodes (e.g. a few tens)
- Unlimited programmability
 - General purpose computers (or clusters) in datacenters
 - Flexible and extensible architecture

Flow-Based Processing

- Leverages flow-specific context
 - Hop-by-hop recovery
 - De-duplication of retransmitted or redundantly transmitted packets in the middle of the network
 - Enhanced resiliency through flow-based fairness
- Allows different services to be selected for different application flows

Structured Overlay Framework

Feasible through a service provider paradigm (just like cloud computing)

Example Applications

- Streaming (+ interactivity)
 - Broadcast-quality video transport
 - Live broadcast-quality video transport
 - Real-time remote manipulation
- Global Monitoring and Control
 - Resilient monitoring and control
 - Intrusion-tolerant monitoring and control
 - Monitoring and control of critical infrastructure

Live Broadcast-Quality Video Transport

• Requires high availability, multicast, reliability (99.999%), and timeliness (~200ms one way)

Live Broadcast-Quality Video Transport

NM-strikes overlay link protocol: guaranteed timeliness, "almost reliable" delivery

Live Broadcast-Quality Video Transport

Near Future: Remote Manipulation

65ms **one-way** latency requirement 40ms one-way propagation delay across North America

Near Future: Remote Manipulation

• Dissemination graphs with targeted redundancy

Increase redundancy in problematic areas of the network

Near Future: Intrusion-Tolerant SCADA

SCADA for the power grid requires both extreme resilience and guaranteed timeliness (on the order of 100-200ms)

Putting it in Context

• P2P Overlays

- Generally include a large number of peers and use self-organizing server-less architectures
- Investment associated with structured overlays offers better performance and resilience
- MPLS
 - Protected virtual circuit capability over single provider IP network
 - Provides bandwidth allocation, traffic class prioritization, multicast
 - Routers provide packet forwarding; cannot support higher-level services that require significant processing and state maintenance
- Software-Defined Networking
 - Offers enhanced network programmability
 - Focuses on separation of control and data planes and improving network management through control-plane innovation

Beyond: Unlimited Potential for a New Generation of Internet Services through Structured Overlays

- Network service that is: authenticated, authorized, admission-controlled, and timeguaranteed, with multicast capabilities
- Seamless support for existing Internet services
 - Obtain core overlay benefits with no application changes through interceptors
- New services
 - Taking advantage of advanced in-network processing capabilities (compound flows)
- For a price...