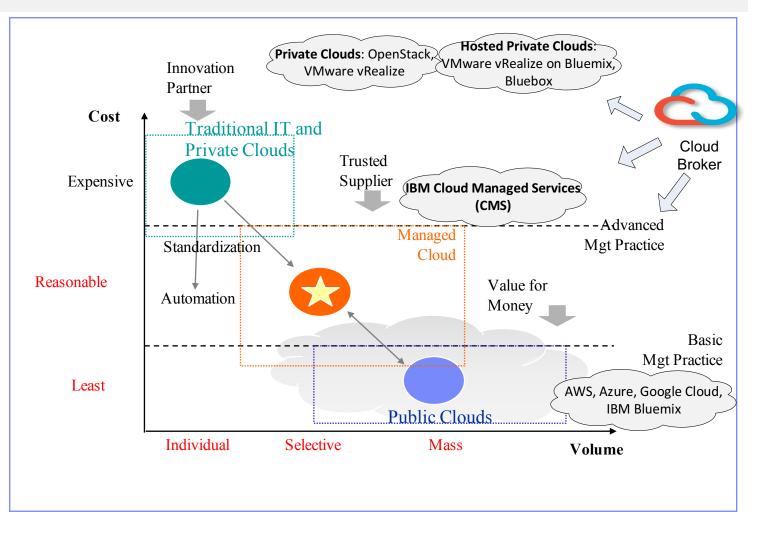


Dependability in Hybrid Clouds: Practitioner Insights

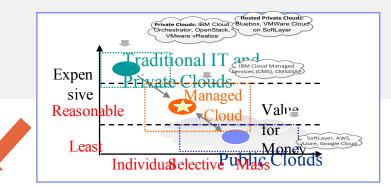
IFIP 10.4 Work Group Meeting – Winter 2018, Goa, India

Sreekrishnan Venkateswaran, Distinguished Engineer, IBM Cloud Center of Excellence

Contents


Today's Hybrid Cloud Landscape & Dependability NFRs
Availability Fulfilment Approach: Statistics from 50 client deals
Case Studies from the field:

I: Engineering "Just Enough" HA on a Private Cloud
II: Hosting a Clustered Appliance on a Public Cloud
III: Application/MW HA on a Shared Private Cloud


Concluding Thoughts: Trends on Dependability on Hybrid Clouds

Soud Landscape: Building Blocks for Hybrid Hosting in Today's Client Deals

- IT Hosting philosophies plotted across 2 axes – cost & volume
- One end of the spectrum lie highvolume low-cost public clouds
- Other end of the spectrum is the low-volume high-cost singletenant environments, cloud or legacy
- For enterprise clients, there is a sweet spot in this landscape in terms of price and services via a managed enterprise-grade multitenant cloud
- Value close to traditional/private IT by providing management above the hypervisor, enhanced isolation & production SLAs
- Price points close to that of public clouds via standardization, virtualization and automation

Tailability Capabilities Across Cloud Categories

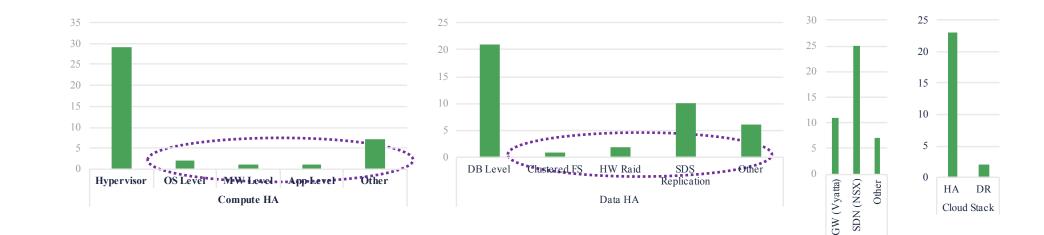
Cloud Category	Availability Philosophy
 On-premise Private Hosted Private Traditional IT 	 Custom Design Example: Case Study 1
Public Clouds	 Provider offers VM-level availability SLAS Provider offers IaaS-level HA on Bare metal
Managed Multi-tenant (or "shared private") Clouds	 In addition to OS-level availability, introduces clustering to provide a more highly available environment Example: Case Study 3 HA clusters by allowing customers to specify anti-collocation of the virtual workload onto separate servers for fault containment Connects clusters to shared storage for shared-disk HA topologies.

\bigcirc

Non-Functional Requirements in Cloud Deals: A Recent Example

NFR#	Category	Requirement	Deliverables
NFR01	Availability	Cloud management software should be highly available	OpenStack and Virtualization component will have active-active configuration. Handle Server overload v/s Server going down.
NFR02	Availability	Hardware Management	Workload running on a failed host will be restarted on another host in the resource pool for both AIX and VMware if the host fails
NFR03	Business Continuity	Backup & Restore	Support backup policies pertaining to NetBackup
NFR04	Monitoring & Event Mgt	Host monitoring required Guest monitoring required (Managed) Dashboards - utilization monitoring	Monitor both hosts and guests, OS agents to be initially deployed manually during post-provisioning.
NFR05	Image Management	Standard Images and patterns to be maintained	Standard image catalogue will be maintained Application patterns to be created Manage a standardized catalogue of patterns
NFR06	Security	Follow client's security guidelines	TBD
NFR07	Disaster Recovery	RPO of 30 minutes, RTO of 4 hours	Support failover on DR-sensitive workloads within RTO/RPO
NFR08	Security	Network Isolation	Segregation using VLANs (for Lpars) and VxLANs (for x-86 optional)

& A & SLO Requirements in Cloud Deals: Recent Example


.....

 Availability SLA Provisioning Re DR SLA: RPO/ Incident resolut On-boarding tin Time to build Personal sectors in the sector of the	Incident Resolution SLAs Severity 1 – Resolution time 90% within 4 hours Severity 2- Resolution time 90% within 24 hours		
Instance Type	Provisioning Time SLOs		 Severity 3 – <u>Response</u> time 7 calendar days
Bronze	15 minutes		
Silver	30 Minutes		 Severity 4 – <u>Response</u> time 30
Gold	60 minutes		calendar days •
Platinum	24 hours		

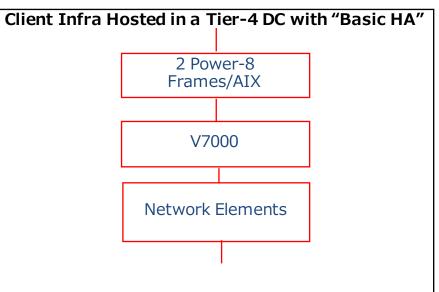
6

Availability Solution Approach Data from Cloud Deals: Recent Statistics (1/2)

	No H	Compute HA			Data HA				Network HA		Cloud Stack		
	A										IIA		DR
# Deals (out of		Hypervisor -level	OS Cluster	MW (e.g. DB Server)			Clustered File systems	HW RAID	SDS Replicas	G W	SDN	23	2
50)		29	2	2	1	25	1	2	10	11	25		

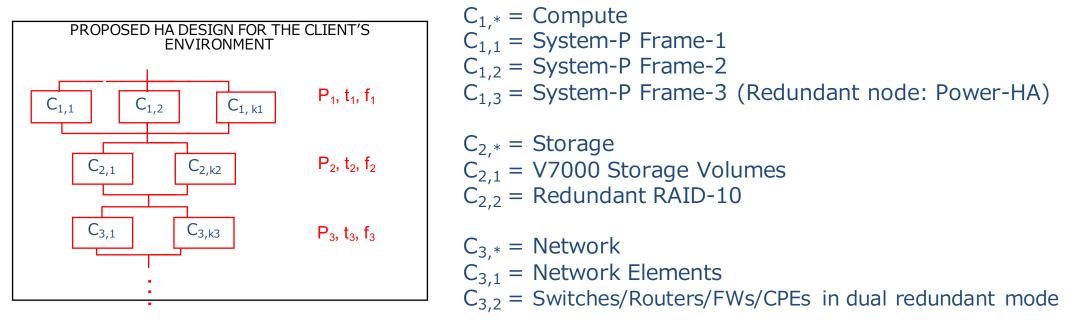
Network HA

Availability Solution Approach Data from Cloud Deals: Recent Statistics (2/2)


🖒 Cloud

Problem Statement

- 1. A global client required a 99.90 uptime SLA (9h/y downtime) at OS level
- 2. But the managed Service Provider (MSP) offered only an uptime SLA of 99.0 (3d/y downtime) by default Client Infra Hosted in a Tier-4
- 3. However, the MSP allowed 99.5 (2d/y, 7m/d down) SLA on client laaS enabled with "Basic HA":
 - Tier-4 Data Center (99.995 at site-level)
 - Storage V7K with Redundant HVACs
 - System-P/AIX
 - 24x7 Hands & Feet in DC


Solution Approach that was Followed

- 1. Assume that the managed service provider offers only 99.0 with "Basic HA"
- 2. Engineer additional HA on the laaS
- 3. Model the ensuing redundancy and establish to the MSP team that the additional HA can increase the SLA from 99.0 to 99.95 (4h/y) without additional risk to the MSP

Additional HA Engineered in the Proposed System

The following is the proposed design for the client (in the primary data center):

We model a cloud-hosted system S as a serial combination of n clusters. Let there be 'n' clusters that constitute the system. Let each cluster C_i be composed of K_i nodes, each denoted as $C_{i,ki}$.

Overall down-time probability of S can be expressed as

 $D_s = B_s + F_s$ where

B_s = System downtime due to non-recoverable failures (breakdown of one or more clusters) and

F_s = System downtime due to recoverable failures (outage when clusters recover from node failures)

B_s and F_s are mutually exclusive if we disregard the possibility of an unrecoverable failure during cluster failover

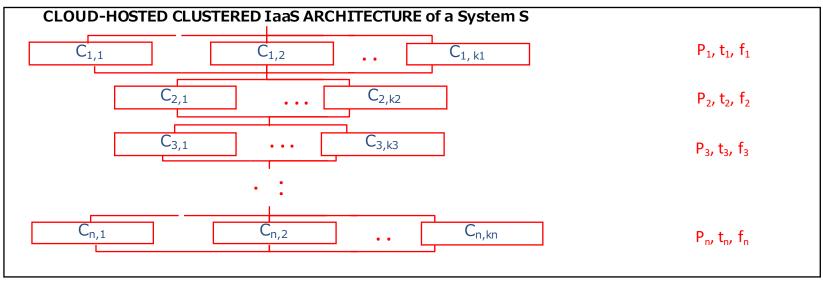
Uptime Modeling [1/3]

 $\begin{array}{l} \mathsf{P}_{i} = \mathsf{Probability that a node in cluster Ci is down } (= 1\% \mbox{ from MSP's assumption that 99\% } \\ & \mathsf{can be offered without HA}) \\ f_{i} = \mathsf{Average yearly failures for component Ci} & (from cloud broker data lakes) \\ t_{i} = \mathsf{Failover latency with the chosen HA algorithm (from empirical observations)} \\ & \check{k}_{i} < \mathsf{K}_{i} = \mathrm{maximum number of failed nodes that can be tolerated by the clustering algorithm of C_{i}} \end{array}$

If the level of redundancy in a cluster is N+ $\dot{\eta}$, then $\dot{k_i}$ is $\dot{\eta}$.

Probability that Cluster C_i is UP = $\sum_{j=K_i}^{K_i} {\binom{K_i}{j}} (1 - Pi)^j P_i^{K_i - j}$

Probability that all Clusters in the system are up = $\prod_{(i=1 \text{ to } n)} \left[\sum_{j=K_i}^{K_i} {K_i \choose j} (1-Pi)^j P_i^{K_i-j} \right]$ **Downtime probability of System S, B_s = 1 -** $\prod_{(i=1 \text{ to } n)} \left[\sum_{j=K_i}^{K_i} {K_i \choose j} (1-Pi)^j P_i^{K_i-j} \right]$ ------ [2]


C Uptime Modeling: Calculating D_s [2/3]

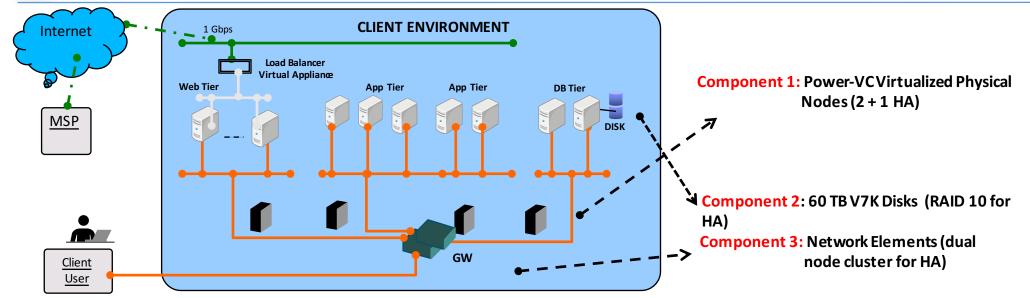
Let t_i be the time (in minutes) to failover if a node in cluster C_i goes down. Let f_i be the average number of failures experienced by a node in cluster C_i in a year.

Failover time t_i is a sum of (i) Time to detect that the currently active node in cluster Ci is down; this is the time before which a heartbeat miss is detected (ii) Time to bring up the failover node if it is on standby and (iii) Time for the failover node to take over from the primary node

Since P_i is the probability of a node in Cluster C_i is down, it is also the probability that the currently active node in Cluster C_i is down.

Downtime due to failover transactions in Cluster $C_i = f_i^* t_i$

Uptime Modeling: Calculating D_s [3/3]


However, multiple clusters might be simultaneously experiencing failover transactions, so that time cannot be double counted.

Downtime due to failover transactions in cluster C_i, when no other clusters are experiencing failover transactions = $f_i^* t_i^* (K_i - k_i) *P_i(X1)$, where X1 is the event that only cluster C_i in the system is experiencing a failover event and $P_i(X1) = \prod_{(j=1 \text{ to } n, j <> i)} [(1-P_j)^{(Kj - k_j)}]$ **Note:** We ignore the error of counting intra-cluster node failover times when more than k_i nodes in C_i

fail simultaneously. We also disregard the possibility of an unrecoverable error during cluster failover. Thus, Downtime due to failover transaction in Cluster C_i when there are no other simultaneous failovers in any other cluster = $f_i^*t_i^*(K_i - \hat{k}_i) \prod_{(j=1 \text{ to } n, j <>i)} [(1-P_j)^{(Kj - \hat{k}_j)}]$ minutes Downtime due to failover transactions across all Clusters = $\sum_{(i=1 \text{ to } n)} f_i^*t_i^*(K_i - \hat{k}_i)^*P_i(X1)$ minutes Downtime probability due to all failover transactions across clusters $F_s = (\sum_{(i=1 \text{ to } n)} ((f_i^*t_i^*(K_i - \hat{k}_i))/525600)^*\prod_{(j=1 \text{ to } n, j <>i)} [(1-P_j)^{(Kj - \hat{k}_j)}])$ ----- [3] Applying Equation [2] and Equation [3] to Equation [1], we get

Total down time probability

$$D_{s} = (1 - \prod_{(i=1 \text{ to } n)} \left[\sum_{j=K_{i}}^{K_{i}} {K_{i} \choose j} (1 - Pi)^{j} P_{i}^{K_{i}-j} \right] + (\sum_{(i=1 \text{ to } n)} ((f_{i}^{*}t_{i}^{*}(K_{i} - \hat{k}_{i}))/525600)^{*} \prod_{(j=1 \text{ to } n, j <>i)} [(1 - P_{j})^{(Kj - \hat{k}j)}]) ----- [4]$$

Total Uptime Probability $U_{s} = 1 - D_{s}$ ----- [5]

C Estimating New Uptime with the Additionally Engineered HA

Compon ent #	Uptime without HA (P _i) Estimates, given MSP's posture	Average yearly failures (f _i) (Estimates from a cloud broker)	Failover latency in HA mode (t _i) (Empirical, from experience)	Proposed HA method	System Uptime with this architecture (U _s) (Applying Equation #5)
1	99% (3d/y downtime)	1	30 minutes	Power HA (2+1)	
2	99%	2	10 seconds	RAID 10	99.945%
3	99%	1	10 seconds	Dual Node Cluster	= 9m/y downtime

6

Cloud

Problem Statement

- 1. A global e-commerce retailer who wished to adopt a "Cloud-First" strategy ran specialized HA appliances (Oracle RAC in this case) in the backend for HA ("below the shopping cart"). Migrating the client to public cloud was ruled out without RAC support
- 2. RAC Clustering of Oracle database servers is not cloud-friendly and hence is not supported on main stream public clouds because
 - Dedicated network links between cluster servers is needed to carry heart beats. Missed heart beats can generate false negatives and can be disastrous
 - Layer-2 adjacency required between cluster servers
 - o Redundant storage needed

Solution Approach that was Followed

- 1. Un-bond the 2 public cloud interfaces on physical bare metal hosts. Provision heartbeat VLANs on this interface
- 2. Provisioning bare metal servers on the same physical rack implies they are L2 adjacent since switches in a rack are trunked (link aggregation). If cluster servers fall on different racks open a ticket to get the corresponding switches trunked
- 3. Use redundant SDS storage (VSAN or Ceph)
- 4. Made this a "pseudo standard" building pattern in certain public cloud data centers

Cloud

Problem Statement

- 1. A research facility in Mexico offers "classroom virtualization", which is edelivery of courses over the public Internet
- 2. A highly scalable web service is connected to a scalable application tier and a database tier (IBM DB2 in this case), all 3 tiers hosted on a "shared private" managed cloud. The DB tier needs to operate in HA mode
- 3. In general, DB HA will be of limited value at a VM-level since both database server instances could end up on the same physical host

Solution Approach that was Followed

- 1. Database servers (IBM DB2) were deployed in HA mode in anticollocated VMs.
- 2. The database itself was hosted on a shared disk
- 3. The clustered database could thus tolerate single physical host failures

Concluding Thoughts: Trends on Dependability in Hybrid Clouds

- In the "Cloud First" hosting model that enterprises are increasingly adopting, workload dependability fulfilment is more about solution composition than about engineering effort if target hosting is on modern-day public and "shared private" clouds.
- On private clouds, dependability translates to redundancy engineering, but math modeling is almost always needed for a "just enough" design that maps as close as possible to SLAs
- There are also "non technical" aspects that influence.
 dependability, such as the standard SLA catalogues of managed service providers and application support teams.

C Summary

We discussed:

- Today's hybrid cloud landscape & dependability NFRs
- Availability fulfilment approach statistics from 50 client deals
- Three client case studies where required dependability was improvised/engineered in the face of constraints on the cloud
- Trends on dependability in hybrid clouds

