
Prof. P. Felber
Pascal.Felber@unine.ch
http://iiun.unine.ch/

…for
Privacy-preserving

Cloud Applications

TRUSTED EXECUTION
ENVIRONMENTS…

Cloud computing and security
l Cloud is an appealing paradigm

l Cost savings due to sharing (economies of scale)
l Easy/ubiquitous access to data
l Widely applicable: IaaS, PaaS, SaaS, DaaS, ?aaS
l Affordable for SMEs

l Tempting to attack
l Resources are accessible online, remotely
l One service provider holds data from multiple

companies
l Financial gain from selling/trading sensitive data

Trusted Execution Environments... — P. Felber 2

Why is data so important?
l Data is key asset for businesses

l Moving data offsite is inherent security risk

l Storing data in the cloud
l Encryption helps

l Using data stored in the cloud
l Hard if data is encrypted
l Some tasks (e.g., queries, matching) possible

l Processing data in the cloud
l Transformations of encrypted data is very hard
l Cryptographic techniques are not practical (yet)

Trusted Execution Environments... — P. Felber 3

Securing data
l Challenges

l Data should be searchable, range queries
l Must not leak information (e.g., statistical attack

knowing the distribution of values)
l Tradeoffs between functionality, performance and

confidentiality, privacy

l Tools
l Encryption

l Deterministic or non-deterministic, order-preserving,
homomorphic

l Trusted computing (e.g., SGX)

Trusted Execution Environments... — P. Felber 4

Why is Cloud security important?

Trusted Execution Environments... — P. Felber 5

Cloud security
l Data confidentiality becomes a real problem

l Storage, processing take place off premises

l No control over hardware
l Must deal with physical attacks

l Hardware is shared between customers
l Vulnerability in one service can affect others

l Less control over software stack
l Managed and operated by Cloud provider

l Insider attacks
l Malicious employee with root access

Trusted Execution Environments... — P. Felber 6

Hypervisor

Hypervisor

Hypervisor

Provider’s perspective
l Cloud provider needs

to protect against
malicious customers
l Hypervisor-based

isolation
l Both security and

performance

l One-way protection

Trusted Execution Environments... — P. Felber

Application/service

Application/service

Application/service

…

7

Client’s perspective
l Cloud tenant is forced

to trust the provider…
… Including personnel
… Including every

software component

l Ideally, we want to
trust only our service

Trusted Execution Environments... — P. Felber

Application/service

OS

VMM

Firmware

Cloud platform

Staff

…

8

The software stack
l Cloud platforms contain enormous amounts of

code that must be trusted
l Linux: ~20 MLOC
l KVM: ~13 MLOC
l OpenStack: ~2 MLOC

l Cloud platforms are effectively a trusted
computing base (TCB): all components of the
system are critical to security
l Software, hardware

Trusted Execution Environments... — P. Felber 9

Bugs are a reality
l More code ⇒ more bugs

l Exploited vulnerability may lead to complete disclosure
of confidential data

l Xen hypervisor
l 184 vulnerabilities (2012-2016)

[http://www.cvedetails.com/product/23463/XEN-XEN.html?vendor_id=6276]

l Linux kernel
l 721 vulnerabilities (2012-2016)

[http://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33]

l Especially bad in privileged software as it may
result in unrestricted access to the system

Trusted Execution Environments... — P. Felber 10

Protected mode not sufficient
l Protected mode (rings) protects OS from

applications, and applications from one
another…
… until a malicious applications exploits a flaw to gain full

privileges and then tampers with the OS or other
applications

l Applications not protected from privileged code
attacks

l The attack surface is the whole software stack
l Applications, OS, VMM, drivers, BIOS…

Trusted Execution Environments... — P. Felber 11

Software attacks in the Cloud
l Performed by executing software on the

victim computer
l Can be done remotely

l Vast majority of attacks exploit vulnerabilities
in software components
l E.g., memory safety violations in C/C++

l Note: applicable not only to the cloud
environment

Trusted Execution Environments... — P. Felber 12

Software attacks in the Cloud
l Control-flow hijacking

l Goal: execute arbitrary code on the target machine
l Modify application’s control flow

l Code injection attack
l Overwrite return address by writing beyond allocated

buffer on the stack (inject code)
l Jump to the injected code

l Return-oriented programming
l Hijack control flow by corrupting stack (no injection)
l Jump to sequences of instructions (gadgets) already

present in memory (e.g., libc) ending with a return
l Chain gadgets to execute arbitrary code

Trusted Execution Environments... — P. Felber 13

Hardware attacks in the Cloud
l Require physical access to the machine

l Bus snooping
l Dump CPU ↔ memory communication

l Cold boot attacks
l Power cycle the machine, boot to a lightweight OS,

dump memory contents…
… or remove memory modules, plug into another

machine, dump memory contents
l DRAM retains its state for a short period of time

Trusted Execution Environments... — P. Felber 14

Example: “Row hammer” attack
l Attack the system by

causing bit-flips in
memory
l Accessing physical bits

causes neighboring
bits to flip

l Carefully chosen
addresses can result in
privilege escalation

l Effect
l Sandbox escape
l Corrupted page table

Trusted Execution Environments... — P. Felber

Rapid row activations (yellow rows) may
change the values of bits stored in victim
row (purple row). [wikipedia]

code1a:
mov (X), %eax // read from address X
mov (Y), %ebx // read from address Y
clflush (X) // flush cache for address X
clflush (Y) // flush cache for address Y
jmp code1a

15

Example: Heartbleed bug
l Serious vulnerability in the popular OpenSSL

cryptographic software library
l Very widely used: apache/nginx (66% of Web servers),

email servers, chat servers, VPN, etc.

l Buffer overrun when replying to a heartbeat
message

l Allows anyone on the Internet to read the
memory of the systems protected by the
vulnerable versions of the OpenSSL software
l The attacker can obtain sensitive data from server’s

memory: passwords, private keys, …

Trusted Execution Environments... — P. Felber 16

Meltdown
l Allows a program to

access the memory and
secrets of other programs
and the operating system

Spectre
l Allows an attacker to trick

error-free programs into
leaking their secrets

Trusted Execution Environments... — P. Felber 17

More examples

Goals: security in the Cloud
l Confidentiality

l Information is not made available or disclosed to
unauthorized individuals, entities, or processes

⇒ Encryption

l Integrity
l Data cannot be modified in an undetected manner
⇒MAC, digital signature

l The problem: what mechanisms can we use to
protect data confidentiality and integrity in
untrusted environments (such as clouds)?

Trusted Execution Environments... — P. Felber 18

Ensuring data confidentiality
l Data-at-rest protection

l Encrypt data before storing on disk
l Encrypted file systems, full-disk encryption
l Application-level protection with encrypted databases

l Communication protection
l Well established end-to-end encryption mechanisms
l Transport layer security (TLS)

l Trusted platform module (TPM)
l Tamper-resistant chip external to the CPU
l Facilities for secure generation of cryptographic keys,

remote attestation, sealed storage
l Limited protection, susceptible to physical attacks

Trusted Execution Environments... — P. Felber 24

Ensuring data confidentiality
l How to ensure confidentiality during

computation?
l Need to decrypt data before processing
l Encryption keys/plaintext data in main

memory/registers

l Memory dump will reveal all secrets

l No (practical) solution until recently
l Homomorphic encryption: too slow, not general

enough

Trusted Execution Environments... — P. Felber 25

Encrypted data processing
l Homomorphic encryption

“a form of encryption which allows specific types of
computations to be carried out on ciphertext and
generate an encrypted result which, when decrypted,
matches the result of operations performed on the
plaintext” [wikipedia]

l Fully homomorphic encryption [Gentry 2010]

l Supports arbitrary functions on encrypted data
l Addition, multiplication, binary operations

Trusted Execution Environments... — P. Felber 26

Homomorphic encryption [CCSW '11]

Trusted Execution Environments... — P. Felber

S� SH.Keygen SH.Enc SH.Dec SH.Add SH.Mult SH.Mult
precomp. deg 1 deg 2 w/ deg red

t D n dlg(q)e ms ms ms ms ms ms ms ms s
2 1 512 19 27 60 81 2 2 � < 1 � �

2 1024 38 55 120 171 9 6 10 1 15 0.34
3 2048 64 110 260 353 29 18 33 1 56 1.98
4 2048 89 111 270 357 32 19 35 1 59 2.94
4 4096 94 221 540 733 82 46 89 2 155 7.63
5 4096 120 223 560 742 85 49 94 3 163 10.59
10 8192 264 438 1480 1738 425 227 454 7 887 114.57
15 16384 423 880 4000 4176 1503 781 1561 14 3160 669.40

128 1 1024 27 54 110 163 4 4 � < 1 � �
2 2048 52 110 270 348 23 15 25 1 41 0.23
3 2048 82 110 270 357 32 20 35 1 60 0.44
3 4096 86 222 520 724 69 41 77 4 130 1.05
4 4096 118 221 550 740 86 49 93 4 162 1.62
5 4096 150 221 590 771 117 65 124 4 226 2.76
10 8192 324 437 1620 1845 548 283 565 6 1069 26.17
10 16384 338 870 3540 3864 1269 656 1327 19 2501 63.49
15 16384 513 864 4710 4503 1925 977 1960 29 3844 145.55

1024 1 1024 30 54 110 164 5 4 � < 1 � �
2 2048 58 110 250 348 24 15 26 1 41 0.19
3 2048 91 111 270 366 38 22 41 2 73 0.46
3 4096 95 221 530 733 81 46 88 4 154 0.95
4 4096 130 220 580 756 102 57 109 4 196 1.50
5 4096 165 220 600 770 117 64 125 4 226 2.19
5 8192 171 440 1250 1582 275 148 288 5 526 5.33
10 8192 354 435 1720 1824 523 271 538 9 538 19.28
10 16384 368 868 3690 3851 1260 664 1300 19 1593 48.23
15 16384 558 863 5010 4805 2343 1136 2269 13 4411 126.25

Table 2: Timings for the somewhat homomorphic encryption scheme using the example parameters given in
Table 1. The column labeled S� gives timing for sampling an element from the discrete Gaussian distribution
�. In the second column for SH.Enc, labeled prec., encryption is measured without sampling from �, which
is instead done as a precomputation. The two columns for SH.Dec correspond to decryption of a degree-1
and a degree-2 ciphertext, respectively. The last column gives the time taken for a ciphertext multiplication
of two linear ciphertexts including the degree reduction resulting in a degree-1 ciphertext for the product.
Measurements were done on a 2.1 GHz Intel Core 2 Duo using the computer algebra system Magma [BCP97].

S� SH.Keygen SH.Enc SH.Dec SH.Add SH.Mult SH.Mult
precomp. deg 1 deg 2 w/ deg red

t D n dlg(q)e ms ms ms ms ms ms ms ms s
2 1 512 19 27 60 81 2 2 � < 1 � �

2 1024 38 55 120 171 9 6 10 1 15 0.34
3 2048 64 110 260 353 29 18 33 1 56 1.98
4 2048 89 111 270 357 32 19 35 1 59 2.94
4 4096 94 221 540 733 82 46 89 2 155 7.63
5 4096 120 223 560 742 85 49 94 3 163 10.59
10 8192 264 438 1480 1738 425 227 454 7 887 114.57
15 16384 423 880 4000 4176 1503 781 1561 14 3160 669.40

128 1 1024 27 54 110 163 4 4 � < 1 � �
2 2048 52 110 270 348 23 15 25 1 41 0.23
3 2048 82 110 270 357 32 20 35 1 60 0.44
3 4096 86 222 520 724 69 41 77 4 130 1.05
4 4096 118 221 550 740 86 49 93 4 162 1.62
5 4096 150 221 590 771 117 65 124 4 226 2.76
10 8192 324 437 1620 1845 548 283 565 6 1069 26.17
10 16384 338 870 3540 3864 1269 656 1327 19 2501 63.49
15 16384 513 864 4710 4503 1925 977 1960 29 3844 145.55

1024 1 1024 30 54 110 164 5 4 � < 1 � �
2 2048 58 110 250 348 24 15 26 1 41 0.19
3 2048 91 111 270 366 38 22 41 2 73 0.46
3 4096 95 221 530 733 81 46 88 4 154 0.95
4 4096 130 220 580 756 102 57 109 4 196 1.50
5 4096 165 220 600 770 117 64 125 4 226 2.19
5 8192 171 440 1250 1582 275 148 288 5 526 5.33
10 8192 354 435 1720 1824 523 271 538 9 538 19.28
10 16384 368 868 3690 3851 1260 664 1300 19 1593 48.23
15 16384 558 863 5010 4805 2343 1136 2269 13 4411 126.25

Table 2: Timings for the somewhat homomorphic encryption scheme using the example parameters given in
Table 1. The column labeled S� gives timing for sampling an element from the discrete Gaussian distribution
�. In the second column for SH.Enc, labeled prec., encryption is measured without sampling from �, which
is instead done as a precomputation. The two columns for SH.Dec correspond to decryption of a degree-1
and a degree-2 ciphertext, respectively. The last column gives the time taken for a ciphertext multiplication
of two linear ciphertexts including the degree reduction resulting in a degree-1 ciphertext for the product.
Measurements were done on a 2.1 GHz Intel Core 2 Duo using the computer algebra system Magma [BCP97].

S� SH.Keygen SH.Enc SH.Dec SH.Add SH.Mult SH.Mult
precomp. deg 1 deg 2 w/ deg red

t D n dlg(q)e ms ms ms ms ms ms ms ms s
2 1 512 19 27 60 81 2 2 � < 1 � �

2 1024 38 55 120 171 9 6 10 1 15 0.34
3 2048 64 110 260 353 29 18 33 1 56 1.98
4 2048 89 111 270 357 32 19 35 1 59 2.94
4 4096 94 221 540 733 82 46 89 2 155 7.63
5 4096 120 223 560 742 85 49 94 3 163 10.59
10 8192 264 438 1480 1738 425 227 454 7 887 114.57
15 16384 423 880 4000 4176 1503 781 1561 14 3160 669.40

128 1 1024 27 54 110 163 4 4 � < 1 � �
2 2048 52 110 270 348 23 15 25 1 41 0.23
3 2048 82 110 270 357 32 20 35 1 60 0.44
3 4096 86 222 520 724 69 41 77 4 130 1.05
4 4096 118 221 550 740 86 49 93 4 162 1.62
5 4096 150 221 590 771 117 65 124 4 226 2.76
10 8192 324 437 1620 1845 548 283 565 6 1069 26.17
10 16384 338 870 3540 3864 1269 656 1327 19 2501 63.49
15 16384 513 864 4710 4503 1925 977 1960 29 3844 145.55

1024 1 1024 30 54 110 164 5 4 � < 1 � �
2 2048 58 110 250 348 24 15 26 1 41 0.19
3 2048 91 111 270 366 38 22 41 2 73 0.46
3 4096 95 221 530 733 81 46 88 4 154 0.95
4 4096 130 220 580 756 102 57 109 4 196 1.50
5 4096 165 220 600 770 117 64 125 4 226 2.19
5 8192 171 440 1250 1582 275 148 288 5 526 5.33
10 8192 354 435 1720 1824 523 271 538 9 538 19.28
10 16384 368 868 3690 3851 1260 664 1300 19 1593 48.23
15 16384 558 863 5010 4805 2343 1136 2269 13 4411 126.25

Table 2: Timings for the somewhat homomorphic encryption scheme using the example parameters given in
Table 1. The column labeled S� gives timing for sampling an element from the discrete Gaussian distribution
�. In the second column for SH.Enc, labeled prec., encryption is measured without sampling from �, which
is instead done as a precomputation. The two columns for SH.Dec correspond to decryption of a degree-1
and a degree-2 ciphertext, respectively. The last column gives the time taken for a ciphertext multiplication
of two linear ciphertexts including the degree reduction resulting in a degree-1 ciphertext for the product.
Measurements were done on a 2.1 GHz Intel Core 2 Duo using the computer algebra system Magma [BCP97].

For our applications (e.g., computing standard deviations),
this is an acceptable trade-o↵ since we only anticipate doing
a single multiplication (or, at most a small number of them
in the case of computing higher-order regression functions).

4.2 Packing Many Bits in a Ciphertext
We show how to transform ciphertexts that encode n bits

b
0

, b
1

, . . . , bn�1

separately, into a single ciphertext that en-
codes the polynomial b(x) = b

0

+ b
1

x+ . . .+ bn�1

xn�1.
Given n ciphertexts cti = (c

0,i, c1,i) that encrypt the bits
bi, it is easy to see that the ciphertext

ctpack , (
X

i

c
0,ix

i,
X

i

c
1,ix

i)

encrypts the polynomial b(x) = b
0

+ . . . + bn�1

xn�1. (It is
equally easy to do this with homomorphically evaluated –
and thus, potentially longer – ciphertexts as well).
In contrast, it seems much harder to unpack a ciphertext.

Namely, transform a ciphertext that encodes the polynomial
b(x) = b

0

+ . . .+ bn�1

xn�1 into n separate ciphertexts that
encode the bits bi. This is a useful thing to do when the
homomorphic computation demands that the messages be
encrypted bit-wise, forcing the client to send many cipher-
texts, one for each bit. If we had a technique for unpack-
ing bits, we could have the client send a single ciphertext,
unpack it at the server’s end, have the server perform com-
putations, and finally, pack the result into one ciphertext to
send it back.

5. IMPLEMENTATION DETAILS
We have implemented the somewhat homomorphic pub-

lic key encryption scheme in the computer algebra system
magma [BCP97] and ran experiments on an Intel Core 2
Duo processor at 2.1 GHz. We use magma’s polynomial
arithmetic for all computations in Rq, in particular we use
magma’s addition and multiplication of polynomials over Zq

modulo xn + 1.

Choice of Parameters. To assess the security of our encryp-
tion scheme, we assume that an adversary carries out the
attacks described in [MR09, LP11]. We follow the analy-
sis described in [LP11] and adjust it to our setting. This
leads to specific parameter choices for di↵erent required ci-
phertext degrees D. The results are summarized in Table 1.
According to the analysis in [LP11], the chosen parameters
mostly provide a security level of around 128 bits or more
against the distinguishing attack with advantage ✏ = 2�32.
We explain the choice of the parameters in detail in Ap-

pendix A. We end this discussion with the remark that both
n and log q seem to grow almost linearly in D (more pre-
cisely, they grow as D logD). This observation is confirmed
by our concrete parameter calculations.

Mean and variance computation. To compute the mean,
we do not need any multiplications, just additions of ci-
phertexts, i.e. the maximal degree of ciphertext we need is
D = 1. We used the parameters from Table 1 with t = 1024,
D = 1 and n = 1024. The corresponding 30-bit prime is
q = 1061093377 and has been chosen so as to support up
to 1000 additions. We do not compute the ciphertext of
the mean, but of the sum of all numbers instead together
with a ciphertext encrypting the number of numbers that
have been added. The mean can then easily be computed

t D n dlg(q)e � lg(T)
2 1 512 19 1.0054 123

2 1024 38 1.0058 107
3 2048 64 1.0051 134
4 2048 89 1.0072 64
4 4096 94 1.0038 218
5 4096 120 1.0049 145
10 8192 264 1.0055 117
15 16384 423 1.0044 172

128 1 1024 27 1.0041 199
2 2048 52 1.0041 198
3 2048 82 1.0067 78
3 4096 86 1.0035 250
4 4096 118 1.0048 149
5 4096 150 1.0062 92
10 8192 324 1.0068 74
10 16384 338 1.0035 243
15 16384 513 1.0054 122

1024 1 1024 30 1.0047 164
2 2048 58 1.0046 164
3 2048 91 1.0074 59
3 4096 95 1.0039 215
4 4096 130 1.0053 124
5 4096 165 1.0068 73
5 8192 171 1.0035 242
10 8192 354 1.0074 59
10 16384 368 1.0039 214
15 16384 558 1.0059 103
32 65536 1298 1.0034 255
64 131072 2705 1.0036 239

Table 1: Example parameters and cost of the distin-
guishing attack from [LP11] for distinguishing ad-
vantage ✏ = 2�32, i.e. c ⇡ 2.657, modulus t for the
message space Rt, maximal ciphertext degree D, size
of prime q, Hermite root factor �, and logarithm of
the runtime lg(T).

by one division after decryption. Computing the ciphertext
for the sum of 100 numbers of size 128-bits from the single
ciphertexts takes about 20ms.
Computation of the variance requires one multiplication.

Suitable parameters are given in Table 1 as t = 1024, D = 2,
and n = 2048 with the 58-bit prime q = 144115188076060673.
To obtain the ciphertexts for the sum and sum of squares
that can be used to determine mean and variance takes
about 6s.

Potential Improvements. We remark that our implementa-
tion uses the generic polynomial arithmetic in magma. A
number of performance optimizations are possible; we men-
tion one such possibility, suggested to us by Daniele Mic-
ciancio. The encryption scheme uses addition and multipli-
cation of polynomials over Zq modulo xn + 1, where n is a
power of two and q = 1 (mod 2n). However, the particular
choice of n and q could allow for much faster implementa-
tions than the generic magma code. Such optimizations have
already been considered in the context of hash functions
(e.g., SWIFFT [LMPR08]) that use fast Fourier-transform
techniques to speed up computations.

Database of 1 million items
• Aggregation (1 addition per item): 15+ minutes
• Range query (1 multiplication per item): 10+ hours

27

Homomorphic encryption
l HELib: open-source homormophic encryption

library in C++ by IBM [Shoup and Halevi, 2012]

l Many optimizations to make HE “practical”, i.e., make
homomorphic evaluation run faster

l Low-level routines (set, add, multiply, shift, etc.)

l Still far from being practical
l Addition: ~1+ ms
l Multiplication: ~10/100+ ms
l Evaluated the AES-128 circuit in 36 hours in 2012

(vs. 2 ms in the clear)
[https://mpclounge.files.wordpress.com/2013/04/hespeed.pdf]

Trusted Execution Environments... — P. Felber 28

Intel SGX
l “Software guard extensions”

l Hardware extension in recent Intel CPUs
l Skylake (2015), Kaby lake (2016)

l Protects confidentiality and integrity of code
and data in untrusted environments
l Platform owner is considered malicious
l Only the CPU chip and the isolated region are trusted

Trusted Execution Environments... — P. Felber 29

Enclaves
l SGX introduces the notion of “enclave”

l Isolated memory region for code and data
l New CPU instructions to manipulate enclaves and a

new enclave execution mode

l Enclave memory is encrypted and integrity-
protected by the hardware
l Memory encryption engine (MEE)
l No plaintext secrets in main memory

l Enclave memory can be accessed only by the
enclave code
l Protection from privileged code (OS, hypervisor)

Trusted Execution Environments... — P. Felber 30

Enclave memory
l Enclave memory is not accessible to other

software
l Can access memory within its process

l Application has ability to defend its secrets
l Attack surface reduced to just enclaves and CPU
l Compromised software cannot steal application secrets

Trusted Execution Environments... — P. Felber

Process

OS

Enclave

Hypervisor

✘✘
✘
✔

31

Enclave memory
l Enclave define APIs

l Enclave interface functions: ECalls to provide input
data to the enclave

l Calls outside the enclave: OCalls to return results from
the enclave

l Constitute the enclave boundary interface

Trusted Execution Environments... — P. Felber

SGX application

Ed
ge

 ro
ut

in
es

Ed
ge

 ro
ut

in
es

ECalls

OCalls

Untrusted
component
(application)

Trusted
component

(enclave)

32

SGX architecture and API

Trusted Execution Environments... — P. Felber

Enclave

SGX user
runtime

SGX modulePage tables

SGX user
runtime

Ap
pl

ic
at

io
n

en
vir

on
m

en
t

Platform

Pr
ivi

le
ge

d
en

vir
on

m
en

t
Ex

po
se

d
HW

OS structure

Runtime

Application

Hardware

EEXIT
EGETKEY
EREPORT

ECREATE
EADD
EEXTEND
EINIT
EBLOCK
ETRACK
EWB
ELD
EPA
EREMOVE

Instructions
Runtime

EENTER
ERESUME

33

SGX execution model
l Trusted execution

environment in a
process
l With its own code and

data
l With controlled entry

points
l Provides confidentiality
l Provides integrity
l Supporting multiple

threads
l With full access to

application memory
Trusted Execution Environments... — P. Felber

User process

Application
code

Application
data

Enclave

OS Enclave

Enclave
code

Enclave
data

Threads

…

34

SGX operation

Trusted Execution Environments... — P. Felber

TEE (SGX)

Enclave

Trusted code
Untrusted code

Create enclave

Call trusted function

…

Execute

Return

Call
gate

Trusted function

35

Enclave page cache (EPC)
l Physical memory region protected by the MEE

l EPC holds enclave contents

l Shared resource between all enclaves running
on a platform
l Currently only 128MB
l ~96MB available to the user, the rest is for metadata

l Content encrypted while in DRAM, decrypted
when brought to CPU
l Plaintext in CPU caches

Trusted Execution Environments... — P. Felber 36

Example

Trusted Execution Environments... — P. Felber

SGX application: unstrusted code

char request_buf[BUFFER_SIZE];
char response_buf[BUFFER_SIZE];

int main()
{

...
while(1)
{
receive(request_buf);
ret = EENTER(request_buf, response_buf);
if (ret < 0)

fprintf(stderr, "Corrupted message\n");
else

send(response_buf);
}
...

}

Enclave: trusted code

char input_buf[BUFFER_SIZE];
char output_buf[BUFFER_SIZE];

int process_request(char *in, char *out)
{

copy_msg(in, input_buf);
if(verify_MAC(input_buf))
{
decrypt_msg(input_buf);
process_msg(input_buf, output_buf);
encrypt_msg(output_buf);
copy_msg(output_buf, out);
EEXIT(0);

} else
EEXIT(-1);

}

Server:
• Receives encrypted requests
• Processes them in enclave
• Sends encrypted responses

37

Example

Trusted Execution Environments... — P. Felber

SGX application: unstrusted code

char request_buf[BUFFER_SIZE];
char response_buf[BUFFER_SIZE];

int main()
{

...
while(1)
{

1 receive(request_buf);
2 ret = EENTER(request_buf, response_buf);

if (ret < 0)
3 fprintf(stderr, "Corrupted message\n");

else
4 send(response_buf);

}
...

}

Enclave: trusted code

char input_buf[BUFFER_SIZE];
char output_buf[BUFFER_SIZE];

int process_request(char *in, char *out)
{

copy_msg(in, input_buf);
if(verify_MAC(input_buf))
{
decrypt_msg(input_buf);
process_msg(input_buf, output_buf);
encrypt_msg(output_buf);
copy_msg(output_buf, out);
EEXIT(0);

} else
EEXIT(-1);

}

1. Receive a requests
2. Enter the enclave with two arguments: pointer to a buffer with encrypted request and pointer to a response buffer

(EENTER instruction switches CPU to the enclave mode and transfers control to predefined location in enclave)
3. Print error message if enclave returns an error
4. Send the response provided by the enclave

38

Example

Trusted Execution Environments... — P. Felber

SGX application: unstrusted code

char request_buf[BUFFER_SIZE];
char response_buf[BUFFER_SIZE];

int main()
{

...
while(1)
{
receive(request_buf);
ret = EENTER(request_buf, response_buf);
if (ret < 0)

fprintf(stderr, "Corrupted message\n");
else

send(response_buf);
}
...

}

Enclave: trusted code

char input_buf[BUFFER_SIZE];
char output_buf[BUFFER_SIZE];
1
int process_request(char *in, char *out)
{
2 copy_msg(in, input_buf);
3 if(verify_MAC(input_buf))

{
4 decrypt_msg(input_buf);

process_msg(input_buf, output_buf);
encrypt_msg(output_buf);
copy_msg(output_buf, out);
EEXIT(0);

} else
EEXIT(-1);

}

1. Enclave entry point
2. Copy request into enclave memory (enclave can access in buffer in untrusted memory while untrusted part cannot

access input_buf buffer in trusted memory)
3. Check the MAC (assuming keys were already exchanged)
4. Decrypt request

39

Example

Trusted Execution Environments... — P. Felber

SGX application: unstrusted code

char request_buf[BUFFER_SIZE];
char response_buf[BUFFER_SIZE];

int main()
{

...
while(1)
{
receive(request_buf);
ret = EENTER(request_buf, response_buf);
if (ret < 0)

fprintf(stderr, "Corrupted message\n");
else

send(response_buf);
}
...

}

Enclave: trusted code

char input_buf[BUFFER_SIZE];
char output_buf[BUFFER_SIZE];

int process_request(char *in, char *out)
{

copy_msg(in, input_buf);
if(verify_MAC(input_buf))
{
decrypt_msg(input_buf);

5 process_msg(input_buf, output_buf);
6 encrypt_msg(output_buf);
7 copy_msg(output_buf, out);
8 EEXIT(0);

} else
EEXIT(-1);

}

5. Process request and store result in output buffer
6. Encrypt result and add MAC
7. Write result to untrusted memory for access from outside
8. Exit the enclave (EEXIT instruction switches from enclave to normal mode and transfer control to the next location

after EENTER, similar to regular return)

40

Enclave construction

Trusted Execution Environments... — P. Felber

Enclave is populated using a special instruction (EADD)
• Contents are initially in untrusted memory
• Copied into the EPC in 4KB pages
Both data and code are copied before starting execution in enclave

char input_buf[BUFFER_SIZE];
char output_buf[BUFFER_SIZE];

int process_request(char *in, char *out)
{

copy_msg(in, input_buf);
if(verify_MAC(input_buf))
{
decrypt_msg(input_buf);
process_msg(input_buf, output_buf);
encrypt_msg(output_buf);
copy_msg(output_buf, out);
EEXIT(0);

} else
EEXIT(-1);

}
EPC

DRAM
1
2

3

41

Enclave construction
l Enclave contents are distributed in plaintext

l Can be inspected
l Must not contain any (plaintext) confidential data

l Secrets are provisioned after the enclave was
constructed and its integrity verified

l Problem: what if someone tampers with the
enclave?
l Contents are initially in untrusted memory

Trusted Execution Environments... — P. Felber 42

Enclave construction
l Someone may tamper with the enclave by

modifying the code

Trusted Execution Environments... — P. Felber

int process_request(char *in, char *out)
{

copy_msg(in, input_buf);
if(verify_MAC(input_buf))
{
decrypt_msg(input_buf);
process_msg(input_buf, output_buf);
encrypt_msg(output_buf);
copy_msg(output_buf, out);
EEXIT(0);

} else
EEXIT(-1);

}

int process_request(char *in, char *out)
{

copy_msg(in, input_buf);
if(verify_MAC(input_buf))
{
decrypt_msg(input_buf);
process_msg(input_buf, output_buf);
copy_msg(output_buf, external_buf);
encrypt_msg(output_buf);
copy_msg(output_buf, out);
EEXIT(0);

} else
EEXIT(-1);

}

Write unencrypted response to outside memory

43

Enclave construction
l CPU calculates enclave’s measurement hash

during enclave construction
l Each new page extends the hash with the page content

and attributes (read/write/execute)
l Hash computed with SHA-256

l Measurement can then be used to attest the
enclave to a local or remote entity

Trusted Execution Environments... — P. Felber 44

Enclave attestation
l Is my code running on remote machine intact?

l Is code really running inside an SGX enclave?

l Local attestation
l Prove enclave’s identity (=measurement) to another

enclave on the same CPU

l Remote attestation
l Prove enclave’s identity to a remote party

l Once attested, an enclave can be trusted with
secrets

Trusted Execution Environments... — P. Felber 45

Enclave construction

Trusted Execution Environments... — P. Felber

CPU calculates enclave’s measurement hash during
enclave construction
Different measurement if enclave is modified

EPC

DRAM CPU

c0 94 7d bc 35 52 ba

9a 16 a6 63 0b 72 09

0d 0f 15 0b d0 2d ae
1a 55 f9 2f a8 20 98

46

Local attestation
l Prove identity of A to a local enclave B

Trusted Execution Environments... — P. Felber

1. Target enclave B measurement is required for key generation
2. Report contains information about target enclave B, including its measurement
3. CPU fills in the report and creates a MAC using the report key, which depends on random CPU fuses

and the target enclave B measurement
4. Report sent back to target enclave B
5. Verify report by CPU to check that it was generated on the same platform, i.e., its MAC was created with

the same report key (available only on the same CPU)
6. Check the MAC received with the report and do not trust A upon mismatch

CPU

Enclave A Enclave B
1. Hi! I’m 5f904ba8910bff! Who are you?

0d 0f 15 0b d0 2d ae
Measurement (enclave A)

5f 90 4b a8 91 0b ff
Measurement (enclave B)2. Please create a report for

5f904ba8910bff

0d 0f 15 0b d0 2d ae

3. Here you go!

4. Here is my report
0d 0f 15 0b d0 2d ae

5. Please give me my
report verification key

6. Here you go!

47

Remote attestation
l Transform a local report to a remotely

verifiable “quote”

l Based on provisioning enclave (PE) and
quoting enclave (QE)
l Architectural enclaves provided by Intel
l Execute locally on user platform

l Each SGX-enabled CPU has a unique key
fused during manufacturing
l Intel maintains a database of these keys

Trusted Execution Environments... — P. Felber 48

Remote attestation
l PE communicates with Intel attestation service

l Proves it has a key installed by Intel
l Receives asymmetric attestation key

l QE performs local attestation for enclave
l QE verifies report and signs it using attestation key
l Creates a quote that can be verified outside platform

l The quote and signature are sent to the
remote attester, which communicates with
Intel attestation service to verify quote validity

Trusted Execution Environments... — P. Felber 49

Multithreading support
l SGX allows multiple threads to enter the same

enclave simultaneously
l One thread control structure (TCS) per thread
l Part of the enclave, reflected in measurement

l TCS limits the number of enclave threads
l Upon thread entry a TCS is blocked and cannot be

used by another thread

l Each TCS contains address of the entry point
l Prevents jumps into random locations inside of enclave

Trusted Execution Environments... — P. Felber 50

SGX paging
l SGX provides a mechanism to evict an EPC

page to unprotected memory
l EPC is very limited in size

l Paging performed by the OS
l Validated by the HW to prevent attacks on address

translations
l Metadata (MAC, version) kept within EPC

l Accessing evicted page results in page fault
l The page is brought back into the EPC by the OS
l Hardware verifies integrity of the page
l Another page might be evicted if the EPC is full

Trusted Execution Environments... — P. Felber 51

SGX limitations
l Amount of memory the enclave can use needs

to be known in advance
l Dynamic memory support in SGX v2

l Security is not perfect
l Vulnerabilities within the enclave can still be exploited
l Side-channel attacks are possible

l Performance bottlenecks
l Enclave entry/exit is costly
l Paging is very expensive

l Application partitioning? Legacy code? …

Trusted Execution Environments... — P. Felber 52

Summary
l The cloud is attractive for many reasons

l Simplicity, availability, cost, economies of scale,
performance, etc.

l Great for computations, non-sensitive data processing

l Also an attractive target for attacks!
l Data is power, must be protected
l Encryption helps but limits opportunities for querying,

processing data
l Homomorphic encryption great but slow

l TEEs like SGX provide a first practical solution that
combines efficiency and security
l Requires trusting Intel, no HW bugs/backdoors

Trusted Execution Environments... — P. Felber 53

SGX PRIMER
Writing your first SGX application…

Trusted Execution Environments... — P. Felber 54

1. Define interface

Trusted Execution Environments... — P. Felber

Enclave definition language: myenclave.edl

enclave {
untrusted{

void ocall_error([in,string] const char *msg);
};

trusted {
public int ecall_compute(int a, int b);

};
};

myenclave_u.h

myenclave_u.c

myenclave_t.h

myenclave_t.c

sgx_edger8r
Untrusted Trusted

55

2. Write code

Trusted Execution Environments... — P. Felber

Application: application.c

#include <stdio.h>
#include <myenclave_u.h>

void ocall_error(const char *msg) {
printf(msg); // syscall

}

int main() {
sgx_enclave_id_t eid = 0;
// initalize enclave

int ret;
ecall_compute(eid, &ret, 4, -5);
printf("Result: %d\n", ret);

// destroy enclave
return 0;

}

Enclave: myenclave.c

#include <myenclave_t.h>

int ecall_compute(int a, int b) {
int res = a + b;
if(res < 0)
ocall_error("SGX says: I do not like "

"negative results\n");
return res;

}

56

3. Compile code

Trusted Execution Environments... — P. Felber

myenclave_u.c

application.c

myenclave_t.c

myenclave.c

Untrusted Trusted

a.out myenclave.so

-nostdinc
-fno-builtin-printf
-nostdlib
-nodefaultlibs
-nostartfiles (...)

gcc/g++

57

4. Sign code and run

Trusted Execution Environments... — P. Felber

Trusted

sgx_sign

myenclave.so

private_key.pem

myenclave.signed.so

$ ls
a.out myenclave.signed.so

$./a.out
SGX says: I do not like negative results
Result: -1

58

QUESTIONS?
Thanks!

Trusted Execution Environments... — P. Felber 59

EXTRA SLIDES

Trusted Execution Environments... — P. Felber 60

Secure content-based router
l Pub/sub model

l Decoupled many-to-
many communication

l Routing based on
subscriptions (interest
of consumers) and
message content

l CBR matches filters
against data
l Must inspect messages

(threat to privacy)
l Filtering done in SGX

enclave
Trusted Execution Environments... — P. Felber 61

Service (data) provider

Infrastructure provider

Source

TEE (SGX) TEE (SGX)

Source… …

…

Client

Source

Enclave Enclave

ClientClient

Publication

Publication Subscription

… …

SCBR subscription/publication
l To register subscription S (1-3)
l Consumer encrypts S with publisher’s

PK and sends {S}PK to producer
l Producer checks client’s status, re-

encrypts S and sends {S}SK to routing
engine

l Routing engine decrypts and stores S

l To publish message M (4-6)
l Publisher encrypts header of M with SK

and sends {M}SK to routing engine,
payload encrypted with group key

l Routing engine decrypts header and
matches it against index, payload
remains encrypted outside enclave and
is forwarded to all matching clients

Trusted Execution Environments... — P. Felber 62

TEE (SGX)

Enclave

Producer Consumer

PK

➊
-1

SK

SK

➋

➌

➍
➎

➏

SCBR evaluation
l Limited memory in enclave

l Paging is costly

l Matching faster than ASPE
l Cache miss effects

Trusted Execution Environments... — P. Felber 63

Out ASPE In AES Out AES Cache limit Cache misses (out AES) [%]

101

102

103

104

105

103 104 105
0%

20%

40%

60%

80%

100%

M
a
tc

h
in

g
 t
im

e
 (

µ
s)

Number of registered subscriptions

e100a1

101

102

103

104

105

103 104 105
0%

20%

40%

60%

80%

100%

M
a
tc

h
in

g
 t
im

e
 (

µ
s)

Number of registered subscriptions

e80a1

101

102

103

104

105

103 104 105
0%

20%

40%

60%

80%

100%

M
a
tc

h
in

g
 t
im

e
 (

µ
s)

Number of registered subscriptions

e80a2

101

102

103

104

105

106

103 104 105
0%

20%

40%

60%

80%

100%

M
a
tc

h
in

g
 t
im

e
 (

µ
s)

Number of registered subscriptions

e80a4

101

102

103

104

105

106

103 104 105
0%

20%

40%

60%

80%

100%

M
a
tc

h
in

g
 t
im

e
 (

µ
s)

Number of registered subscriptions

extsub2

102

103

104

105

106

103 104 105
0%

20%

40%

60%

80%

100%
M

a
tc

h
in

g
 t
im

e
 (

µ
s)

Number of registered subscriptions

extsub4

101

102

103

104

105

103 104 105
0%

20%

40%

60%

80%

100%

M
a
tc

h
in

g
 t
im

e
 (

µ
s)

Number of registered subscriptions

e80a1z100

101

102

103

104

105

103 104 105
0%

20%

40%

60%

80%

100%

M
a
tc

h
in

g
 t
im

e
 (

µ
s)

Number of registered subscriptions

e80a1zz100

101

102

103

104

105

103 104 105
0%

20%

40%

60%

80%

100%

M
a
tc

h
in

g
 t
im

e
 (

µ
s)

Number of registered subscriptions

e100a1zz100

Figure 7: Comparison of different approaches with varying workloads.

serviced by the operating system and hence incur an even
higher overhead.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 20 40 60 80 100 120 140 160 180 200 220
0

5

10

15

20

25

30

35

40

R
a
tio

R
a

tio
 (

×
1
0

3
)

Subscription database size (MB)

Registration time in/out enclave
(left scale)
Page faults in/out enclave
(right scale)

Figure 8: Loss in performance when exceeding EPC
memory limit.

Figure 8 shows the combined results of two executions
when populating the in-memory subscription storage. In
one execution we registered subscriptions inside an enclave,
and outside in the other. We used the workload e80a1 in
plaintext format, and we executed the same registration code
in both experiments. Each point of the graph accounts for
an average of 5,000 points, from a set of 500,000 subscrip-
tions. We plotted the page fault rates observed by dividing
their numbers from inside and outside enclaves. The values
measured outside are very large for the largest database size,
reaching up to 40,000 more page faults.

We also divided the time it took to register one subscription
inside the enclave by the time required outside. We can
clearly see the point where paging starts to take place, when
memory consumption reaches just over 90 MB. The vertical
line shows the EPC memory limit, which comprises both
the enclaved application memory and SGX internal data
structures. At the maximum size of our experiment (213 MB),
registering a subscription inside the enclave took 18 times
more time than doing it outside. These results show that the
overhead grows outrageously when paging starts to happen,
and they make a strong case for further studies on optimising
the memory footprint of applications running inside secure
SGX enclaves.

Out ASPE In AES Out AES Cache limit Cache misses (out AES) [%]

101

102

103

104

105

103 104 105
0%

20%

40%

60%

80%

100%

M
a

tc
h

in
g

 t
im

e
 (

µ
s)

Number of registered subscriptions

e100a1

101

102

103

104

105

103 104 105
0%

20%

40%

60%

80%

100%

M
a

tc
h

in
g

 t
im

e
 (

µ
s)

Number of registered subscriptions

e80a1

101

102

103

104

105

103 104 105
0%

20%

40%

60%

80%

100%

M
a

tc
h

in
g

 t
im

e
 (

µ
s)

Number of registered subscriptions

e80a2

101

102

103

104

105

106

103 104 105
0%

20%

40%

60%

80%

100%

M
a

tc
h

in
g

 t
im

e
 (

µ
s)

Number of registered subscriptions

e80a4

101

102

103

104

105

106

103 104 105
0%

20%

40%

60%

80%

100%

M
a

tc
h

in
g

 t
im

e
 (

µ
s)

Number of registered subscriptions

extsub2

102

103

104

105

106

103 104 105
0%

20%

40%

60%

80%

100%

M
a

tc
h

in
g

 t
im

e
 (

µ
s)

Number of registered subscriptions

extsub4

101

102

103

104

105

103 104 105
0%

20%

40%

60%

80%

100%

M
a

tc
h

in
g

 t
im

e
 (

µ
s)

Number of registered subscriptions

e80a1z100

101

102

103

104

105

103 104 105
0%

20%

40%

60%

80%

100%

M
a

tc
h

in
g

 t
im

e
 (

µ
s)

Number of registered subscriptions

e80a1zz100

101

102

103

104

105

103 104 105
0%

20%

40%

60%

80%

100%

M
a

tc
h

in
g

 t
im

e
 (

µ
s)

Number of registered subscriptions

e100a1zz100

Figure 7: Comparison of different approaches with varying workloads.

serviced by the operating system and hence incur an even
higher overhead.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 20 40 60 80 100 120 140 160 180 200 220
0

5

10

15

20

25

30

35

40

R
a

tio

R
a

tio
 (

×
1

0
3
)

Subscription database size (MB)

Registration time in/out enclave
(left scale)
Page faults in/out enclave
(right scale)

Figure 8: Loss in performance when exceeding EPC
memory limit.

Figure 8 shows the combined results of two executions
when populating the in-memory subscription storage. In
one execution we registered subscriptions inside an enclave,
and outside in the other. We used the workload e80a1 in
plaintext format, and we executed the same registration code
in both experiments. Each point of the graph accounts for
an average of 5,000 points, from a set of 500,000 subscrip-
tions. We plotted the page fault rates observed by dividing
their numbers from inside and outside enclaves. The values
measured outside are very large for the largest database size,
reaching up to 40,000 more page faults.

We also divided the time it took to register one subscription
inside the enclave by the time required outside. We can
clearly see the point where paging starts to take place, when
memory consumption reaches just over 90 MB. The vertical
line shows the EPC memory limit, which comprises both
the enclaved application memory and SGX internal data
structures. At the maximum size of our experiment (213 MB),
registering a subscription inside the enclave took 18 times
more time than doing it outside. These results show that the
overhead grows outrageously when paging starts to happen,
and they make a strong case for further studies on optimising
the memory footprint of applications running inside secure
SGX enclaves.

