TRUSTED EXECUTION
ENVIRONMENTS...

...Tor
Privacy-preserving
Cloud Applications

Prof. P. Felber

Pascal.Felber@unine.ch
http://iiun.unine.ch/

Cloud computing and security

e Cloud is an appealing paradigm
Cost savings due to sharing (economies of scale)

Easy/ubiquitous access to data
Widely applicable: laaS, Paa$S, SaaS, Daa$S, ?aaS

Affordable for SMEs
e Tempting to attack

Resources are accessible online, remotely
One service provider holds data from multiple

companies
Financial gain from selling/trading sensitive data

Trusted Execution Environments...— P. Felber

Why is data so important?

e Data is key asset for businesses
Moving data offsite is inherent security risk

e Storing data in the cloud
Encryption helps

e Using data stored in the cloud
Hard if data is encrypted
Some tasks (e.g., queries, matching) possible

e Processing data in the cloud
Transformations of encrypted data is very hard
Cryptographic techniques are not practical (yet)

Trusted Execution Environments...— P. Felber 3

Securing data

e Challenges

Data should be searchable, range queries

Must not leak information (e.g., statistical attack
knowing the distribution of values)

Tradeoftfs between functionality, performance and
confidentiality, privacy

e Tools
Encryption

Deterministic or non-deterministic, order—preserving,
homomorphic

Trusted computing (e.g., SGX)

Trusted Execution Environments...— P. Felber 4

Why is Cloud security important?

Yahoo hack: 1bn accounts compromised

by biggest data breach in history prqphox hack leads to leaking of 68m
The latest incident to emerge A“Other DaY! AnOther n the interrIEt

from the breach of 500m user s113

HaCR: 1 1 7 Mllllon ling encrypted passwords and details of
Linkedln Emails And ustomers, has been leaked
Passwords

° LORENZO FRANCESCHI-BICCHIERAI

0 Yahoo have said the stolen user accoun
Photograph: Dado Ruvic/Reuters

data from more than 1bn user
making it the largest such bre: x has been hacked, with over 68m users’ email
Four years later, the 2012 LinkedIn breach just got nto the internet.
way worse.

Trusted Execution Environments...— P. Felber 5

Cloud security

Data confidentiality becomes a real problem
Storage, processing take place off premises

No control over hardware
Must deal with physical attacks

Hardware is shared between customers
Vulnerability in one service can affect others

| ess control over software stack
Managed and operated by Cloud provider

Insider attacks
Malicious employee with root access

Trusted Execution Environments...— P. Felber

Provider’s perspective

e Cloud provider needs
to protect against
malicious customers
o Hypervisor-based

Application/service

Hypervisor

isolation Application/service
o Both security and Hypervisor
performance

Application/service

Hypervisor

e One-way protection

Trusted Execution Environments...— P. Felber 7

Client's perspective

e Cloud tenantis forced

to trust the provider... ol e

Including personnel

: OS
Including every
software component VMM
Firmware

e |deally, we want to

. Cloud platform
trust only our service

Staff

Trusted Execution Environments...— P. Felber 8

The software stack

e Cloud platforms contain enormous amounts of

code that must be trusted

Linux: ~20 MLOC
KVM: ~13 MLOC
OpenStack: ~2 MLOC

e Cloud plattorms are effectively a trusted
computing base (TCB): all components of the

system are critical to security
Software, hardware

Trusted Execution Environments...— P. Felber 9

Bugs are a reality

e More code = more bugs

Exploited vulnerability may lead to complete disclosure
of confidential data

e Xen hypervisor
184 vulnerabilities (2012-2016)

[http://www.cvedetails.com/product/23463/XEN-XEN.html|?vendor_id=6276]

e Linux kernel
721 vulnerabilities (2012-2016)

[http://www.cvedetails.com/product/47/Linux-Linux-Kernel.html|?vendor_id=33]

e Especially bad in privileged software as it may
result in unrestricted access to the system

Trusted Execution Environments...— P. Felber 10

Protected mode not sufficient

e Protected mode (rings) protects OS from
applications, and applications from one

another...

until a malicious applications exploits a flaw to gain full
privileges and then tampers with the OS or other
applications

Applications not protected from privileged code
attacks

e The attack surface is the whole software stack
Applications, OS, VMM, drivers, BIOS...

Trusted Execution Environments...— P. Felber 11

Software attacks in the Cloud

e Performed by executing software on the

victim computer
Can be done remotely

e Vast majority of attacks exploit vulnerabilities

in software components
E.g., memory safety violations in C/C++

e Note: applicable not only to the cloud
environment

Trusted Execution Environments...— P. Felber 12

Software attacks in the Cloud

e Control-flow hijacking
Goal: execute arbitrary code on the target machine
Modity application’s control flow

e Code injection attack

Overwrite return address by writing beyond allocated
butfer on the stack (inject code)

Jump to the injected code

e Return-oriented programming
Hijack control flow by corrupting stack (no injection)

Jump to sequences of instructions (gadgets) already
present in memory (e.g., libc) ending with a return

Chain gadgets to execute arbitrary code

Trusted Execution Environments...— P. Felber

13

Hardware attacks in the Cloud

e Require physical access to the machine

e Bus snooping
Dump CPU ¢ memory communication

e Cold boot attacks
Power cycle the machine, boot to a lightweight OS,
dump memory contents...

or remove memory modules, plug into another
machine, dump memory contents

DRAM retains its state for a short period of time

Trusted Execution Environments...— P. Felber 14

Example: “Row hammer” attack

e Attack the system by
causing bit-flips in
memory

Accessing physical bits
causes neighboring

bits to flip

Carefully chosen
addresses can result in
privilege escalation

o Effect

Sandbox escape
Corrupted page table

Rapid row activations (yellow rows) may
change the values of bits stored in victim
row (purple row). [wikipedia]

codela:
mov (X), %eax // read from address X
mov (Y), %ebx // read from address Y
clflush (X) // flush cache for address X
clflush (Y) // flush cache for address Y
jmp codela

Trusted Execution Environments...— P. Felber 15

W Example: Heartbleed bug

e Serious vulnerability in the popular OpenSSL

cryptographic software library

Very widely used: apache/nginx (66% of Web servers),
email servers, chat servers, VPN, etc.

e Buffer overrun when replying to a heartbeat
message

e Allows anyone on the Internet to read the
memory of the systems protected by the

vulnerable versions of the OpenSSL software

The attacker can obtain sensitive data from server’s
memory: passwords, private keys, ...

16

Trusted Execution Environments...— P. Felber

More examples

Meltdown Spectre
e Allows a program to e Allows an attacker to trick
access the memory and error-free programs into
secrets of other programs leaking their secrets

and the operating system

[»

Trusted Execution Environments...— P. Felber 17

Goals: security in the Cloud

e Confidentiality

Information is not made available or disclosed to
unauthorized individuals, entities, or processes

Encryption

e Integrity
Data cannot be modified in an undetected manner
MAC, digital signature

e The problem: what mechanisms can we use to
orotect data contidentiality and integrity in
untrusted environments (such as clouds)?

Trusted Execution Environments...— P. Felber 18

Ensuring data confidentiality

e Data-at-rest protection
Encrypt data before storing on disk
Encrypted file systems, full-disk encryption
Application-level protection with encrypted databases

e Communication protection

Well established end-to-end encryption mechanisms
Transport layer security (TLS)

e Trusted platform module (TPM)

Tamper-resistant chip external to the CPU

Facilities for secure generation of cryptographickeys,
remote attestation, sealed storage

Limited protection, susceptible to physical attacks

Trusted Execution Environments...— P. Felber 24

Ensuring data confidentiality

e How to ensure confidentiality during

computation?

Need to decrypt data before processing

Encryption keys/plaintext data in main
memory/registers

e Memory dump will reveal all secrets

e No (practical) solution until recently

Homomorphic encryption: too slow, not general
enough

Trusted Execution Environments...— P. Felber 25

Encrypted data processing

e Homomorphic encryption
“a form of encryption which allows specific types of
computations to be carried out on ciphertext and
generate an encrypted result which, when decrypted,
matches the result of operations performed on the

p/aintext" [wikipedial

e Fully homomorphic encryption (Gentry 2010
Supports arbitrary functions on encrypted data
Addition, multiplication, binary operations

Trusted Execution Environments...— P. Felber 26

Homomorphic encryption [ccsw 1)

Sy SH.Keygen SH.Enc SH.Dec SH.Add SH.Mult SH.Mult
precomp. degl deg 2 w/ deg red
t D n [lg(q)] | ms ms ms ms ms ms ms ms S
2 1 512 19 27
2 1024 38 55 Database of 1 million items
] « Aggregation (1 addition peritem): 15+ minutes
10716384 338 | 870 e Range query (1 multiplication peritem): 10+ hours
15 16384 513 | 864
1024 1 1024 30 54 110 164 5 4 — <1 — —
110 250 348 24 15 26 1 41 0.19
3 2048 91 111 270 366 38 22 41 2 3 0.46
3 4096 95 | 221 530 733 81 46 88 4 154 0.95
4 4096 130 | 220 5380 756 102 57 109 4 196 1.50
5 4096 165 | 220 600 770 117 64 125 4 226 2.19
5 8192 171 | 440 1250 1582 275 148 288 5 526 5.33
10 8192 354 | 435 1720 1824 523 271 538 9 538 19.28
10 16384 368 | 868 3690 3851 1260 664 1300 19 1593 48.23
15 16384 558 | 863 5010 4805 2343 1136 2269 13 4411 126.25

Table 2: Timings for the somewhat homomorphic encryption scheme using the example parameters given in
Table 1. The column labeled S, gives timing for sampling an element from the discrete Gaussian distribution
X. In the second column for SH.Enc, labeled prec., encryption is measured without sampling from y, which
is instead done as a precomputation. The two columns for SH.Dec correspond to decryption of a degree-1
and a degree-2 ciphertext, respectively. The last column gives the time taken for a ciphertext multiplication
of two linear ciphertexts including the degree reduction resulting in a degree-1 ciphertext for the product.
Measurements were done on a 2.1 GHz Intel Core 2 Duo using the computer algebra system Magma [BCP97].

Suitable parameters are given in Table 1 ast = 1024, D = 2,
and n = 2048 with the 58-bit prime ¢ = 144115188076060673.

Trusted Execution Environments...— P. Felber

27

Homomorphic encryption

e HELib: open-source homormophic encryption
|Ibl’a ry Iﬂ C++ by |BM [Shoup and Halevi, 2012]

Many optimizations to make HE “practical”, i.e., make
homomorphic evaluation run faster

Low-level routines (set, add, multiply, shift, etc.)

e Still far from being practical
Addition: ~1+ ms
Multiplication: ~10/100+ ms

Evaluated the AES-128 circuit in 36 hours in 2012

(vs. 2 ms in the clear)
[https://mpclounge.files.wordpress.com/2013/04/hespeed.pdf]

Trusted Execution Environments...— P. Felber 28

Intel SGX

e “Software guard extensions”

e Hardware extension in recent Intel CPUs
Skylake (2015), Kaby lake (2016)

e Protects confidentiality and integrity of code

and data in untrusted environments

Platform owner is considered malicious
Only the CPU chip and the isolated region are trusted

Trusted Execution Environments...— P. Felber 29

Enclaves

e SGX introduces the notion of “enclave”

Isolated memory region for code and data

New CPU instructions to manipulate enclaves and a
new enclave execution mode

e Enclave memory is encrypted and integrity-

protected by the hardware

Memory encryption engine (MEE)
No plaintext secrets in main memory

e Enclave memory can be accessed only by the

enclave code
Protection from privileged code (OS, hypervisor)

Trusted Execution Environments...— P. Felber 30

Enclave memory

e Enclave memory is not accessible to other

software
Can access memory within its process

e Application has ability to defend its secrets

Attack surface reduced to just enclaves and CPU
Compromised software cannot steal application secrets

x X Enclave ';

L
OS

Hypervisor

Trusted Execution Environments...— P. Felber 31

Enclave memory

e Enclave define APIs
» Enclave interface functions: ECalls to provide input
data to the enclave
» Calls outside the enclave: OCalls to return results from
the enclave
» Constitute the enclave boundary interface

SGX application

Trusted
component
(enclave)

Untrusted
component
(application)

Edge routines

(2]
0
=
E=]
>
S
o
o
xe)
L

Trusted Execution Environments...— P. Felber 32

SGX architecture and API

Application
environment

environment

HW

Exposed Privileged

=]

Application

Runtime

Trusted Execution Environments...— P. Felber

Instructions

[EEXIT
EGETKEY
| EREPORT

EENTER
| ERESUME

ECREATE
EADD
EEXTEND
EINIT
EBLOCK
ETRACK
EWB

ELD

EPA

EREMOVE

33

SGX execution model

e Trusted execution
environmentin a

User process

Enclave

OS

process
With its own code and Fnclave
data -
With controlled entry . Enclave
Doints data
Provides confidentiality Application Threads
Provides integrity code
Supporting multiple Application
threads data

With full access to
application memory

Trusted Execution Environments...— P. Felber 34

SGX operation

e N
Untrusted code TEE (56X
:’ } Trusted code
i $ { Call -
' ' ate
E i I Trusted function |E|
i Create enclave i i. Execute :
v HE
] =] (]]
i Call trusted function !' I\ Return |
| i plrivivieypelsivi
i $ i PRI
: : LY LG
] T] 2 TEEms= T Essess
L J g Enclave)
_ y

Trusted Execution Environments...— P. Felber 35

Enclave page cache (EPC)

e Physical memory region protected by the MEE

EPC holds enclave contents

e Shared resource between all enclaves running

on a platform
Currently only 128MB
~96MB available to the user, the rest is for metadata

e Content encrypted while in DRAM, decrypted

when brought to CPU
Plaintext in CPU caches

Trusted Execution Environments...— P. Felber 36

SGX application: unstrusted code

char request_buf[BUFFER_SIZE],;
char response_buf[BUFFER_SIZE];

int mainQ)

{

while(1)
{

receive(request_buf);
ret = EENTER(request_buf, response_buf);
if (ret < 0)

fprintf(stderr, "Corrupted message\n");
else

send(response_buf);

Enclave: trusted code

char input_buf[BUFFER_SIZE];
char output_buf[BUFFER_SIZE];

int process_request(char *in, char *out)
{
copy_msg(in, input_buf);
if(verify_MAC(input_buf))
{

decrypt_msg(input_buf);
process_msg(input_buf, output_buf);
encrypt_msg(output_buf);
copy_msg(output_buf, out);
EEXIT(Q);

else

EEXIT(-1);

Server:

* Receives encrypted requests
* Processes them in enclave

* Sends encrypted responses

Trusted Execution Environments...— P. Felber

37

SGX application: unstrusted code

char request_buf[BUFFER_SIZE],;
char response_buf[BUFFER_SIZE];

int mainQ)

{

while(1)
{

receive(request_buf);
ret = EENTER(request_buf, response_buf);
if (ret < 0)

fprintf(stderr, "Corrupted message\n");
else

send(response_buf);

Enclave: trusted code

char input_buf[BUFFER_SIZE];
char output_buf[BUFFER_SIZE];

int process_request(char *in, char *out)
{
copy_msg(in, input_buf);
if(verify_MAC(input_buf))
{

decrypt_msg(input_buf);
process_msg(input_buf, output_buf);
encrypt_msg(output_buf);
copy_msg(output_buf, out);
EEXIT(Q);

else

EEXIT(-1);

—_—

. Receive a requests

2. Enter the enclave with two arguments: pointer to a buffer with encrypted request and pointer to a response buffer
(EENTER instruction switches CPU to the enclave mode and transfers control to predefined location in enclave)

Print error message if enclave retums an error
Send the response provided by the enclave

P w

Trusted Execution Environments...— P. Felber

38

SGX application: unstrusted code

char request_buf[BUFFER_SIZE]; Enclave: trusted code
char response_buf[BUFFER_SIZE];
char input_buf[BUFFER_SIZE];
1;En’c main() char output_buf[BUFFER_SIZE];
1
... int process_request(char *in, char *out)
while(1) {
{ 2 copy_msg(in, input_buf);
receive(request_buf); 3 if(verify_MAC(input_buf))
ret = EENTER(Crequest_buf, response_buf); {
if (ret < 0) 4 decrypt_msg(input_buf);
fprintf(stderr, "Corrupted message\n"); process_msg(input_buf, output_buf);
else encrypt_msg(output_buf);
send(response_buf); copy_msg(output_buf, out);
EEXIT(D);
else
EEXIT(-1);

Enclave entry point

Copy request into enclave memory (enclave can access in buffer in untrusted memory while untrusted part cannot
access input_buf buffer in trusted memory)

Check the MAC (assuming keys were already exchanged)

Decrypt request

PwWw M=

Trusted Execution Environments...— P. Felber 39

SGX application: unstrusted code

char request_buf[BUFFER_SIZE]; Enclave: trusted code
char response_buf[BUFFER_SIZE];

char input_buf[BUFFER_SIZE];
1;En’c main() char output_buf[BUFFER_SIZE];

int process_request(char *in, char *out)

Jgr}{lem {

copy_msg(in, input_buf);

receive(request_buf); ifCverify_MACCinput_buf))

ret = EENTER(request_buf, response_buf); {

if (ret < 0) decrypt_msg(input_buf);
fprintf(stderr, "Corrupted message\n"); process_msg(input_buf, output_buf);

else encrypt_msg(output_buf);
send(response_buf); copy_msg(output_buf, out);

EEXIT(D);

else

EEXIT(-1);

Process request and store result in output buffer

Encrypt result and add MAC

Write result to untrusted memory for access from outside

Exit the enclave (EEXIT instruction switches from enclave to normal mode and transfer control to the next location
after EENTER, similar to regular retum)

oo o

Trusted Execution Environments...— P. Felber 40

DRAM

1 { char input_buf[BUFFER_SIZE];
ARl char output_buf[BUFFER_SIZE];

int process_request(char *in, char *out) |
{
copy_msg(in, input_buf);

if(verify_MACCinput_buf))
{

decrypt_msg(input_buf);

3-< process_msg(input_buf, output_buf);
encrypt_msg(output_buf);
copy_msg(output_buf, out);
EEXIT(Q);

else

EEXIT(-1);

Enclave is populated using a special instruction (EADD)

+ Contents are initially in untrusted memory

+ Copied into the EPC in 4KB pages

Both data and code are copied before starting execution in enclave

Trusted Execution Environments...— P. Felber

41

Enclave construction

e Enclave contents are distributed in plaintext

Can be inspected
Must not contain any (plaintext) confidential data

e Secrets are provisioned after the enclave was
constructed and its integrity veritied

e Problem: what if someone tampers with the

enclave?
Contents are initially in untrusted memory

Trusted Execution Environments...— P. Felber 42

Enclave construction

e Someone may tamper with the enclave by

moditying the

code

int process_request(char *in, char *out) int process_request(char *in, char *out)

{
copy_msg(in, input_buf);
if(verify_MAC(input_buf))
{

decrypt_msg(input_buf);

{
copy_msg(in, input_buf);
if(verify_MAC(input_buf))
{

decrypt_msg(input_buf);

process_msg(input_buf, output_buf); process_msg(input_buf, output_buf);

encrypt_msg(output_buf);
copy_msg(output_buf, out);
EEXIT(Q);

else

EEXIT(-1);

copy_msg(output_buf, external_buf);
encrypt_msg(output_buf);
copy_msg(output_buf, out);
EEXIT(Q);

else

EEXIT(-1);

Write unencrypted response to outside memory

Trusted Execution Environments...— P. Felber 43

Enclave construction

e CPU calculates enclave’s measurement hash

during enclave construction

Each new page extends the hash with the page content
and attributes (read/write/execute)

Hash computed with SHA-256

e Measurement can then be used to attest the
enclave to a local or remote entity

Trusted Execution Environments...— P. Felber 44

Enclave attestation

ls my code running on remote machine intact?

s code really running inside an SGX enclave?

| ocal attestation

Prove enclave’s identity (=measurement) to another
enclave on the same CPU

Remote attestation
Prove enclave's identity to a remote party

Once attested, an enclave can be trusted with
secrets

Trusted Execution Environments...— P. Felber 45

Enclave construction

DRAM CPU

ACo 94 7d bc 35 52 ba

—— 9a 16 ab 63 @b 72 09

N ——0d 0f 15 0b do 2d ae:
la 55 f9 2f a8 20 98

. J

CPU calculates enclave’s measurement hash during
enclave construction
Different measurement if enclave is modified

Trusted Execution Environments...— P. Felber 46

Local attestation

e Prove identity of A to a local enclave B

Enclave A Enclave B

Y 1. Hil'l'm 5f904ba8910bff! Who are you? (*
@d of 15 @b do 2d ae{‘ @d of 15 ob do 2d aecf|~

) 4. Here is my report \

2. Please create a report for
5f904ba8910bff report verification key

a a i

Measurement (enclave A)
3. Here you go! 6. Here you go!
- @d 0f 15 @b do 2d ae .

Measurement (enclave B) 5. Please give me my

Wn =

o A

gl 5f 90 4b a8 91 @b ff <

cruaf

. Target enclave B measurement is required for key generation

Report contains information about target enclave B, including its measurement

CPU fills in the report and creates a MAC using the report key, which depends on random CPU fuses
and the target enclave B measurement

Report sent back to target enclave B

Verify report by CPU to check that it was generated on the same platform, i.e., its MAC was created with
the same report key (available only on the same CPU)

Check the MAC received with the report and do not trust A upon mismatch

Trusted Execution Environments...— P. Felber 47

Remote attestation

e Transform a local report to a remotely
verifiable "quote”

e Based on provisioning enclave (PE) and
quoting enclave (QE)

Architectural enclaves provided by Intel
Execute locally on user platform

e Each SGX-enabled CPU has a unique key

fused during manufacturing
Intel maintains a database of these keys

Trusted Execution Environments...— P. Felber 48

Remote attestation

e PE communicates with Intel attestation service

Proves it has a key installed by Intel
Receives asymmetric attestation key

e QFE performs local attestation for enclave

QE verifies report and signs it using attestation key
Creates a quote that can be verified outside platform

e The quote and signature are sent to the
remote attester, which communicates with
Intel attestation service to verify quote validity

Trusted Execution Environments...— P. Felber 49

Multithreading support

e SGX allows multiple threads to enter the same

enclave simultaneously

One thread control structure (TCS) per thread
Part of the enclave, reflected in measurement

e TCS limits the number of enclave threads

Upon thread entry a TCS is blocked and cannot be
used by another thread

e Each TCS contains address of the entry point

Prevents jumps into random locations inside of enclave

Trusted Execution Environments...— P. Felber 50

SGX paging

e SGX provides a mechanism to evict an EPC

page to unprotected memory
EPC is very limited in size

e Paging performed by the OS

Validated by the HW to prevent attacks on address
translations

Metadata (MAC, version) kept within EPC

e Accessing evicted page results in page fault

The page is brought back into the EPC by the OS
Hardware verifies integrity of the page

Another page might be evicted if the EPC is full

Trusted Execution Environments...— P. Felber 51

SGX limitations

e Amount of memory the enclave can use needs

to be known in advance
Dynamic memory support in SGX v2

e Security is not perfect
Vulnerabilities within the enclave can still be exploited
Side-channel attacks are possible

e Performance bottlenecks

Enclave entry/exit is costly
Paging is very expensive

e Application partitioning? Legacy code? ...

Trusted Execution Environments...— P. Felber 52

Summary

e The cloud is attractive for many reasons
Simplicity, availability, cost, economies of scale,
performance, etc.

Great for computations, non-sensitive data processing

e Also an attractive target for attacks!

Data is power, must be protected

Encryption helps but limits opportunities for querying,

processing data
Homomorphic encryption great but slow

TEEs like SGX provide a first practical solution that

combines efficiency and security
Requires trusting Intel, no HW bugs/backdoors

Trusted Execution Environments...— P. Felber 53

Writing your first SGX application...

SGX PRIMER

Trusted Execution Environments...— P. Felber 54

1. Define interface

Enclave definition language: myenclave. edl

enclave {

untrusted{

void ocall_error([in,string] const char *msg);
};
trusted {

public int ecall_compute(int a, int b);
};

Untrusted Trusted
sgx_edger8r
myenclave_u.h H myenclave_t.h

Trusted Execution Environments...— P. Felber

55

2. Write code

Application: application.c Enclave: myenclave.c

#include <stdio.h> #include <myenclave_t.h>

#include <myenclave_u.h>
int ecall_compute(int a, int b) {
void ocall_error(const char *msg) { int res = a + b;

printf(msg); // syscall ifC res <0)
ocall_error("SGX says: I do not like
"negative results\n");

int main() { return res;
sgx_enclave_id_t eid = 0; }
// initalize enclave

int ret;
ecall_compute(eid, &ret, 4, -5);
printf("Result: %d\n", ret);

// destroy enclave
return 0;

Trusted Execution Environments...— P. Felber 56

3. Compile code

Untrusted Trusted

application.c H

-nostdinc
-fno-builtin-printf
gCC/g++ -nostdlib
-nodefaultlibs
-nostartfiles (...)

a.out H myenclave.so g

Trusted Execution Environments...— P. Felber 57

4. Sign code and run

Trusted
myenclave.so

private_key.pem

|
N\

sgx_sign

myenclave.signed.so g

$ 1s
a.out myenclave.signed.so

$./a.out
SGX says: I do not like negative results
Result: -1

Trusted Execution Environments...— P. Felber 58

1N

Institut d'informatique
Université de Neucha

Thanks!

QUESTIONS?

Trusted Execution Environments...— P. Felber 59

EXTRA SLIDES

Trusted Execution Environments...— P. Felber 60

Secure content-based router
e Pub/sub model

Decoupled many-to-

many communication (" Senvice (data) provider
ROUtlﬂg based on i (Souroe)...(Source)...(Source) i
subscrlptlons (interest B S st '
of consumers) and .. A NG, \
message content !)
e CBR matches filters /
againstdata 00 ®TTmTeeT
g . Publication Subscription
MUSt mspect messages (Client)(Client)(Client)

(threat to privacy)

Filtering done in SGX
enclave

Trusted Execution Environments...— P. Felber 61

SCBR subscription/publication

e To register subscription S (1-3) e To publish message M (4-6)

Consumer encrypts S with publisher’s Publisher encrypts header of M with SK
PK and sends {S}px to producer and sends {M}sx to routing engine,
Producer checks client’s status, re- payload encrypted with group key
encrypts S and sends {S} to routing Routing engine decrypts header and
engine matches it against index, payload
Routing engine decrypts and stores S remains encrypted outside enclave and

is forwarded to all matching clients

Producer Consumer
a5 B -
PK SK LA
\ r-l a
ng

‘. 6]

-.'

(4]

(5
u Enclave

\ TEE (SGX)

Trusted Execution Environments...— P. Felber 62

Matching time (us)

SCBR evaluation

e Limited memory in enclave
Paging is costly

e Matching faster than ASPE

Cache miss effects

------ v-- OutASPE ~ —4A— In AES
e100at

100%

80%

60%

40%

20%
1 s et
T B oo

Number of registered subscriptions

o
T
o
...... A Qut AES Cache limit ---@---
e80a1
1 05 100%
ET0 1 S v ﬁ“‘BOA
aé -
ST T S
S| o
S10°) _atT
=" -
1 01 :
10° " |

Number of registered subscriptions

Trusted Execution Environments...— P. Felber

1N

Institut d'informatiqu
Université de Neucha

20 - — 40
_ Registration time in/out enclave
18 | (left scale) | 35
_______________ Page faults in/out enclave
16 | (right scale)
130
14 |
12 L ’ 25 (");\
10 20 <
1 15 &
6 L
10
4 L
ol 15
0

Subscription database size (MB)

Cache misses (out AES) [%]
e80a2

" L . L ™ L L L L 0
0 20 40 60 80 100 120 140 160 180 200 220

100%

10°

—
o
N

Matching time (us

80%

60%

40%

20%

Number of registered subscriptions

0%

63

e

