Powering the Service Responsiveness of Deep Neural Networks with Queuing Models

Evgenia Smirni

Feng Yan, Yuxiong He, Olatunji Ruwase,

Paper appeared at Supercomputing 2016

WHY DEEP LEARNING?

350 million photos uploaded daily

to Facebook

300 hours of new video uploaded every minute to YouTube

Vision

Speech

WHAT IS DEEP LEARNING?

DEEP NEURAL NETWORK (DNN)

DEEP LEARNING SERVICE

PARALLEL CONFIGURATION

Service Parallelism

Intra-node Parallelism

Inter-node Parallelism

IDEAL SPEEDUP

Hypothesized Speedup Metric: Service Rate

Service Parallelism (Same Node)

Parallelism Degree

Speedup

App:ImageNet 22KMachine:8-core, 2.1GHz Processor64G Memory

Metric: Service Rate

Service Parallelism (Same Node)

Intra-node Parallelism

EVEN MORE COMPLEX

SIMPLE SOLUTION

OBSERVATION

Deterministic Service Demand

OUR APPROACH

OUR APPROACH

Lightweight Profiling

Profile Service Demand under different Parallelism (i.e., no random arrival) # Configs * Time for Each Exp = Profiling Cost

80 * 0.07 min = 5.5 min

Queuing-based Prediction Model: Captures Queuing Effects Leverage: Cosmetatos' Approximation (uses M/M/c to approximate M/D/c) Extension: use M/M-interf./c queue to approximate M/D-interf./c queue

M: random arrival M-interf.: interference-aware D: deterministic service D-interf.: interference-aware d c: multiple abstracted servers

Solve M/D-interf./c queue Extend Cosmetatos' Approximation

service

OUR APPROACH

Queuing-based Prediction Model: Captures Queuing Effects Leverage: Cosmetatos' Approximation (use M/M/c to approximate M/D/c) Extension: use M/M-interf./c queue to approximate M/D-interf./c queue

$$W^{M/D_{interf}/c}(\lambda) \approx \sum_{i=1}^{c} \frac{p_{i-1}}{\mu_i} + \frac{\prod_{i=1}^{c} \rho_i}{\mu_c \cdot c! \cdot (1-\rho)} \qquad \text{Average Service Time}$$

$$+ \frac{1}{2}(1+f(s) \cdot g(\rho)) \cdot \frac{p_0 \cdot \prod_{i=1}^{c} \rho_i}{\lambda \cdot c!} \cdot \frac{\rho}{(1-\rho)^2} \qquad \text{Average Waiting Time}$$

$$\left(p_n = \begin{cases} \prod_{i=1}^{n} \rho_i \\ \frac{\rho_i - c}{\prod_{i=1}^{n} \rho_i} \\ \frac{\rho_i - c}{n} \\ \frac{\rho_i - c}{$$

Experiment Setup

Image Recognition Task: ImageNet-22K

- 256x256 RGB images in 22,000 categories
- ~2Bn. Parameters model
- Random Arrivals

Distributed DNN Serving System

- Based on Adam [OSDI'14]
- Support: Service, Intra-node, Inter-node parallelisms

Hardware

- **20 nodes**, 10 Gbps Ethernet cluster
- Intel Xeon E5-2450: 2.1GHz, 16 core, 64GB RAM

Prediction Accuracy

ImageNet-22K:LatencyVSLoad

Prediction Accuracy

ImageNet-1K: Latency VS Load

Prediction Accuracy

ImageNet-22K, moderate load, inter-node parallelism 4

Scheduling framework for Deep Neural Network Serving

Automatic

Take Away:

Balance measurements with modeling cost and complexity. Make the model simple enough but not too simple...

Performance prediction with <5% error</p>

Efficient Scheduler:

- > Adapts to dynamic load
- Supports various scheduling requirements

THANK YOU!

Questions?

MORE COMPLEX

Relation between Inter-node and Intra-node Parallelism

Prediction Accuracy

ImageNet-22K: Prediction Error Distribution

DEEP LEARNING SERVICE

