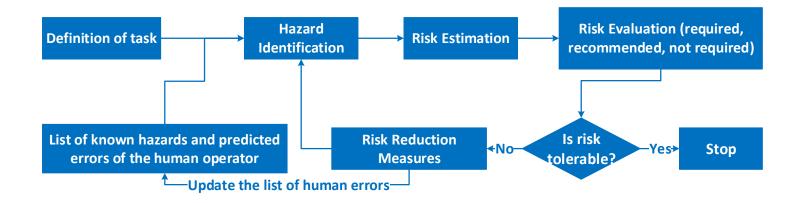
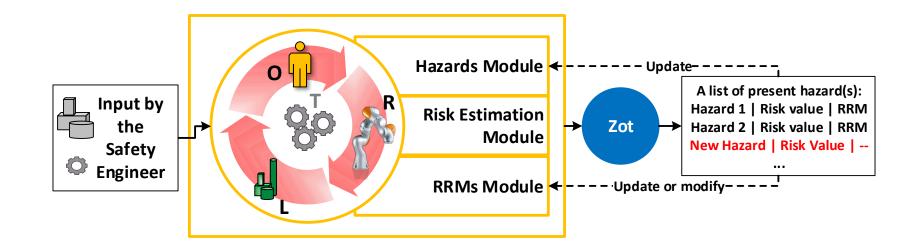


SAFER-HRC: Safety Analysis through Formal vERification in Human-Robot Collaboration


Mehrnoosh Askarpour¹, Dino Mandrioli¹, **Matteo Rossi¹**, Federico Vicentini² ¹Dipartimento di Elettronica e Informazione, Politecnico di Milano ²Istituto di Tecnologie Industriali e Automazione, CNR

Introduction

- Human-Robot Collaborative (HRC) applications are novel applications in which humans and robots intentionally interact
 - dangerous situations for humans can arise
- Safety assessment: determine that no hazardous situations exist or, if they exist, their level of risk is acceptable
 - a deep understanding of possible interactions between humans and robots is necessary
- Approach based on formal methods: exploit formal verification techniques to exhaustively analyze humanrobot interactions



Classic risk assessment approach

Overview of SAFER-HRC

Background: The TRIO logic

- TRIO is a first-order linear temporal logic
 - with a metric notion of time
 - the time domain can be discrete or dense
 - here we focus on a discrete time domain
- The TRIO specification of a system consists of a set of TRIO formulae
 - The formulae state how items are constrained and how they vary over time
- Automated formal verification carried out through the Zot bounded satisfiability checker

TRIO temporal operators

Operator	DEFINITION
$\operatorname{Past}(F,t)$	$t \ge 0 \land \operatorname{Dist}(F, -t)$
$\operatorname{Futr}(F,t)$	$t \ge 0 \land \operatorname{Dist}(F, t)$
$\operatorname{Alw}(F)$	$\forall d : \operatorname{Dist}(F, d)$
$\operatorname{AlwP}(F)$	$\forall d > 0 : \operatorname{Past}(F, d)$
$\operatorname{AlwF}(F)$	$\forall d > 0 : \operatorname{Futr}(F, d)$
$\operatorname{SomF}(F)$	$\exists d > 0 : \operatorname{Futr}(F, d)$
$\operatorname{SomP}(F)$	$\exists d > 0 : \operatorname{Past}(F, d)$
Lasted(F, t)	$\forall d \in (0, t] : \operatorname{Past}(F, d)$
Lasts(F, t)	$\forall d \in (0, t] : \operatorname{Futr}(F, d)$
Within $P(F, t)$	$\exists d \in (0, t] : \operatorname{Past}(F, d)$
Within $F(F, t)$	$\exists d \in (0, t] : \operatorname{Futr}(F, d)$
$\operatorname{Since}(F,G)$	$\exists d > 0: \mathrm{Lasted}(F,d) \wedge \mathrm{Past}(G,d)$
$\operatorname{Until}(F,G)$	$\exists d > 0 : \text{Lasts}(F, d) \land \text{Futr}(G, d)$

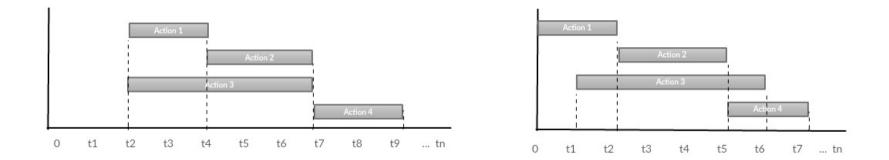
ORL-module

- L: definition of the layout of the cell
 - subdivision in regions, their adjacency
- O: constraints on the operator
 - operator's body also divided in regions
 - avoid unnatural shapes, e.g.:

 $Alw(head_{reg} = arms_{reg} \lor adj(head_{reg}, arms_{reg}))$

- R: constraints on the robot
 - possible relative position of robot elements, e.g.:

$$Alw(R1_{reg} = R2_{reg} \lor adj(R1_{reg}, R2_{reg}))$$


Tasks' model

- A task is broken down into actions
 - an action can be carried out by either the operator, or the robot
- Each action is described by 3 sets of formulae:
 - pre-conditions, which must hold when the action starts executing
 - safety constraints, which hold throughout the execution of the action
 - *post-conditions*, which hold at the end of the execution
- An action can be in one of several states: *not started*, *waiting*, *executing*, *paused*, *done*

Action sequencing

• Pre- and Post-conditions govern the order and possible parallelism in which actions can occur

• Example:

 $a_{screwdrive, preC} \Rightarrow a_{movetopallet, sts} = dn \wedge a_{bringwp, sts} = dn$

Robot vs. Operator actions

 Robot is deterministic: as soon as it can execute an action, it does so:

$$a_{i,pmr} = ro \land a_{i,sts} = wt \land a_{i,safC} \Rightarrow Futr(a_{i,sts} = exe, 1)$$

• Operators, on the other hand, are nondeterministic by nature (but we assume they cannot wait forever):

 $a_{i,pmr} = op \land a_{i,sts} = wt \Rightarrow WithinF(a_{i,sts} = exe \lor a_{i,sts} = ns, \Delta)$

Hazard definition

- Suitable predicates are introduced in the model to highlight hazardous situations
- Example:

 $\begin{aligned} hazard_{headinjury} \Leftrightarrow head_{reg} = \mathrm{EE}_{reg} \wedge \neg (mode_{robot} = idle) \wedge \\ \mathrm{EE}_{type} = screwdriver \end{aligned}$

Risk scoring

Consequences	Severity SE	Class Cl (Fr+Pr+Av)					Frequency		Probability		Avoidance	
		3-4	5-7	8-10	11-13	14-15	Fr		Pr		Av	
Death, loss of eye or arm	4						<=1h	5	Very high	5		
Permanent injury, loss of fingers	3						>1h to <=24h	5	Likely	4		
Reversible injury, medical attention	2						>24h to <=2w	4	Possible	3	Impossible	5
Reversible injury, first aid	1						>2w to <=1y	3	Rarely	2	Possible	3
							>1y	2	Negligible	1	Likely	1

Black area = RRM required Gray area = RRM recommended White area = RRM not required

 $hazard_{headinjury} \land (14 \le CI_{headinjury} \le 15) \rightarrow risk_x = 2$

Risk Reduction Measures

- Hazards whose risk level is not negligible must be countered to reduce the risk level
- This can be done in many ways, and the choice rests with the safety engineer
- RRMs result in modifications to the model
 - e.g., modifications to the layout, such as adding barriers, which prevent certain regions to be reached by the operator
- Example of formalization of RRM:

$$RRM_{headinjury} \Leftrightarrow R1_{reg} = futr(R1_{reg}, 1) \land R2_{reg} = futr(R2_{reg}, 1) \land EE_{reg} = futr(EE_{reg}, 1)$$

 $hazard_{headinjury} \Rightarrow \text{Until}_w(RRM_{headinjury}, \neg hazard_{headinjury})$

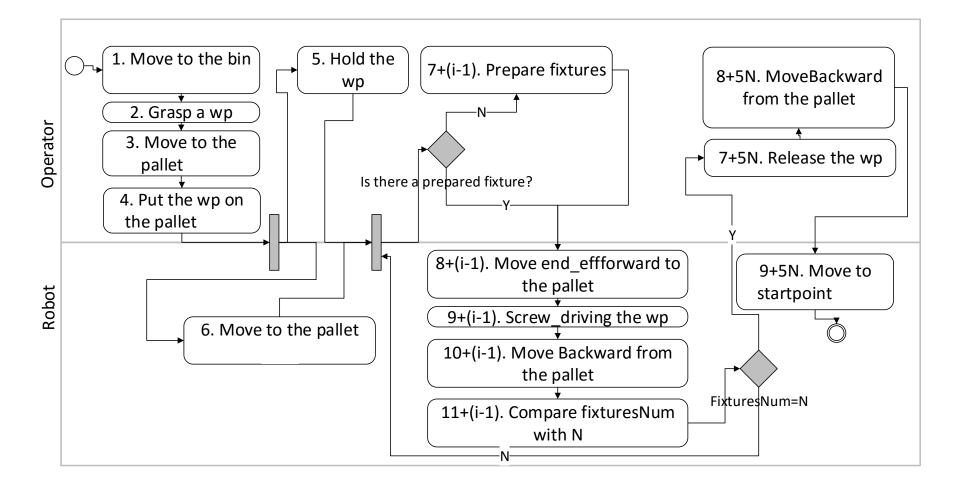
Formal Verification-based risk assessment

• Checking whether known hazards, with unacceptable risk levels, can occur in the system corresponds to checking property:

$$\operatorname{Alw}(\forall x(risk_x = 0))$$

- if the property does not hold, the formal verification tool returns a trace (i.e., a sequence of actions) in which the risk exceeds the "negligible" level
- Checking whether it is possible that some safety constraint is violated, but no hazard is highlighted
 - i.e., some unconsidered hazard can occur

Som $(\exists i (a_{i,sts} = ps \land (\forall x (\neg hazard_x) \lor \exists x (hazard_x \land \neg RRM_x)))))$


Case study

• Layout of the cell:

semi-formal task definition

Some possible hazards

• "Head hit by link R1 of robot"

$$\begin{split} hzd_{hhr1} \Leftrightarrow \left(\mathrm{R1}_{reg} = head_{reg} \lor \mathrm{R1}_{reg} = neck_{reg} \lor \mathrm{R1}_{reg} = shoulders_{reg} \right) \land \\ \left(\mathrm{R1}_{reg} = L_{3_a} \lor \mathrm{R1}_{reg} = L_{3_b} \lor \mathrm{R1}_{reg} = L_{3_c} \right) \end{split}$$

• "Head entrapped by R1"

$$\begin{split} hzd_{her1} \Leftrightarrow \left(\mathrm{R1}_{reg} = head_{reg} \lor \mathrm{R1}_{reg} = neck_{reg} \lor \mathrm{R1}_{reg} = shoulders_{reg} \right) \land \\ \left(\mathrm{R1}_{reg} = L_{5_a} \lor \mathrm{R1}_{reg} = L_{5_b} \lor \mathrm{R1}_{reg} = L_1 \right) \end{split}$$

Detected hazards

- operator mistakenly sends the activation signal to the robot before settling the part on the fixtures
- operator bends and brings head close to tomb while workpiece is being screwdriven, just as screwdriving is finishing and end-effector is about to move backwards from the tomb
- operator stays on the right side of the tomb while holding the workpiece to be screwdriven
 - this can lead to the operator getting entangled between the tombstone and a robot link or to getting hit by a sweeping robot arm

A look ahead

- Increase automated support to safety engineers
 - in creating formal models
 - in identifying problems
 - in suggesting countermeasures
- Improve and refine the formal model
 - incremental addition of details to remove possible false positives

