

69th IFIP WG 10.4 Meeting Dependability & IoT

Systems of Systems (SoS) RMA&D Requirements Decomposition

Aspen / Snowmass, Co Jan 11-15, 2016

John Perazza Lockheed Martin Fellow

© 2015 Lockheed Martin Corporation. All Rights Reserved

Biography

John Perazza

LM Fellow Reliability Engineering / Product Qualification

LM Space Systems Company Email: John.Perazza@LMCO.com Phone: (408)-742-9938

Professional Summary

26 Years service with Lockheed Martin (LM) Space Systems Company and 15 Years with the US Government Naval Air Development Center. Many career technical achievements in Systems Engineering and Specialty Engineering in support of commercial, military and civil programs and proposals. Technical Leadership / Management achievements in Specialty Engineering, Product Qualification and Operations Research. Currently provide LM Fellow consulting to all LM Lines of Business, all LM Corp Business Units, and LM Corporate.

Knowledge & Expertise Areas

Affordability Analysis, Reliability, Maintainability, Availability & Dependability (RMA&D) Analysis; HW / SW Component, Element Product Qualification / Certification for flight; Test Planning and Data Analysis; Operations Analysis; Operations Research; Simulation; BA Applied Mathematics

Agenda

- RMA&D Reqm't Process Needs
- Objective
- LM Business Area RMA&D Activity
- Example SoS for Missile Warning / Defense
- Notional IoT SoS for Intelligent Traffic Control & Autonomous Cars
- Key Design Feature Profile
- "Space Element" RMA&D Decomposition
- "SV or USER Ground Control Element" RMA&D Decomposition
- "User Element" RMA&D Decomposition
- Notional IoT SoS RMA&D Decomposition Summary
- Key Design Feature Verification
- Summary
- Acronym List
- Questions?

RMA&D Reqm't Process Needs

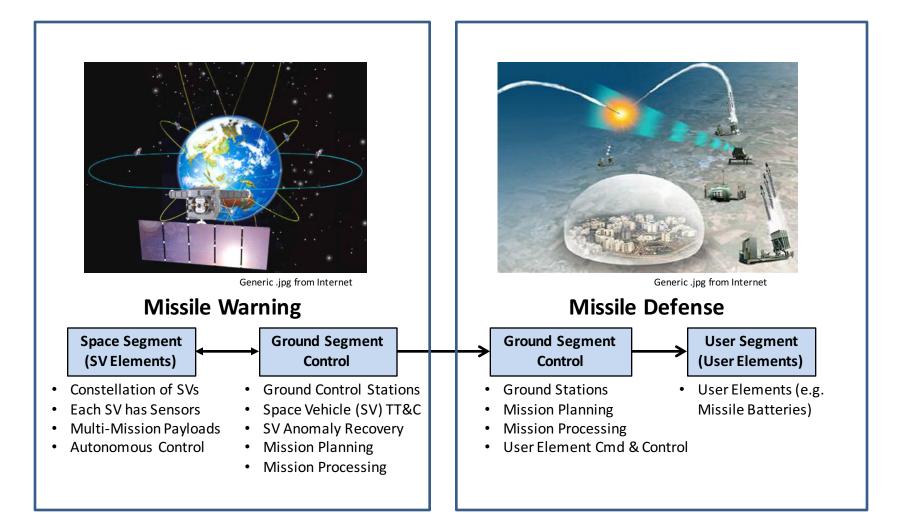
- Reliability, maintainability, availability & dependability (RMA&D) requirements are common to most Programs
- Customers / Programs specify RMA&D at high level:
 SoS, System / Mission, Segment or Element
- RMA&D requirements traditionally drive program mission / system Architecture / Affordability Baseline and Trades
- Programs ensure that RMA&D requirements are decomposed to Element level
- Programs further allocate Element RMA&D requirements to HW / SW Components

IoT RM&D Reqm't Process "Needs" can be Identified / Decomposed / Allocated / Specified

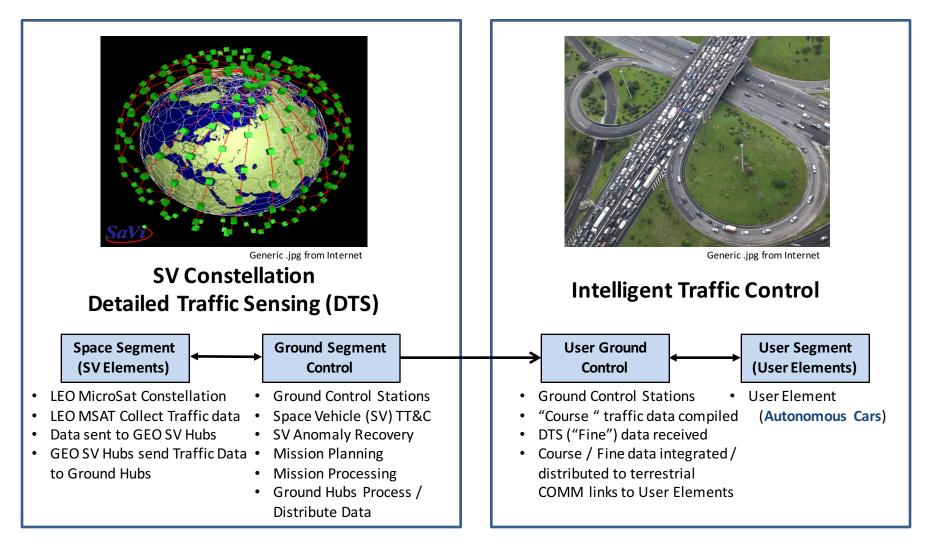
Objective

- Examine SoS RMA&D requirements decomposition process
 - Among System / Mission , Segments and Elements
- Highlight where "key design features" are implemented
 - Element Fault restoration, Fault tolerance, Fail Safe, Fault management
- Examine "key design feature" verification techniques

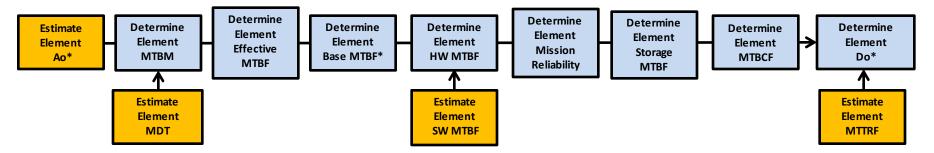
LM Business Area Selected Profile


LOCKHEED MARTIN

Business Area	SoS Examples	Segments	Elements	Maintained System ?	Recovery During Mission ?	Manned ?
LM Aero	5 th Gen Fighter Aircraft	Land	CTOL Aircraft	Yes	Limited	Yes
		CVN	CV Aircraft	Yes	Limited	Yes
		LHA	STOVL Aircraft	Yes	Limited	Yes
LM MFC	Tactical	Ground	Terrestrial Vehicles	Yes	Limited	Yes
	Strike / Defense	Airborne	Missiles	Yes	No	No
		Ground	Missiles	Yes	No	No
LM MST	Situational Awareness	Airborne	UAVs	Yes	Limited	No
	Missile Defense	Ground	Radars	Yes	Yes	Yes
	Missile Defense	Ship	Radars	Yes	Yes	Yes
	Littoral Combat	Undersea	Sensors	Yes	Limited	No
LM SSC	COMM, NAV, Remote Sensing, Weather, etc	Space	Space Vehicles	No	Yes	Νο
		Ground	Fixed / Mobile	Yes	Yes	Yes
		User	Terminals, Interceptors, etc	Yes	No	No


There are Numerous Opportunities to apply RMA&D Decomposition

Example SoS for Missile Warning / Defense


Notional IoT SoS for LOCKHEED MARTIN Intelligent Traffic Control & Autonomous Cars

Technical Approach Example RMA&D Decomposition

- Decompose IoT SoS Ao to Segments, Elements:
 - Decompose SoS Ao to Segment level uniformly or base on Apriori information
 - Decompose Segment Ao to Element Ao level uniformly or based on Apriori information
- Decompose Ao to Reliability, Maintainability & Do to element level via following process

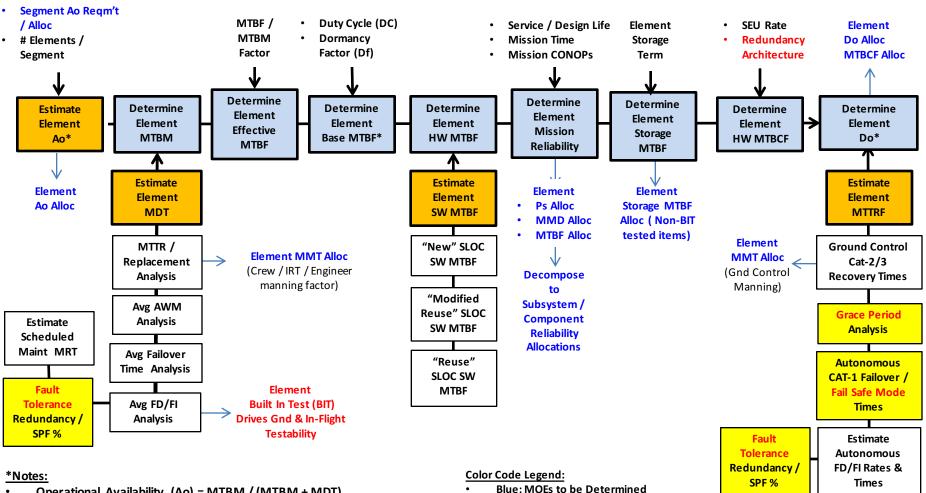
- Characterize decomposition process inputs, resultant RMA&D allocations
- Highlight Fault restoration, Fault tolerance, Fail Safe, Fault Management Implementation
- Summarize Element RMA&D to SoS "system mission" level

*Notes:

- Operational Availability (Ao) = MTBM / (MTBM + MDT)
- Base MTBF = 1/Lambda E = 1/(DC*Lambda B+ (1-DC)*Df*Lambda B)
- Operational Dependability (Do) = MTBCF / (MTBCF + MTTRF)

Color Code Legend:

- Blue: MOEs to be determined
- Orange: Estimated driving MOEs

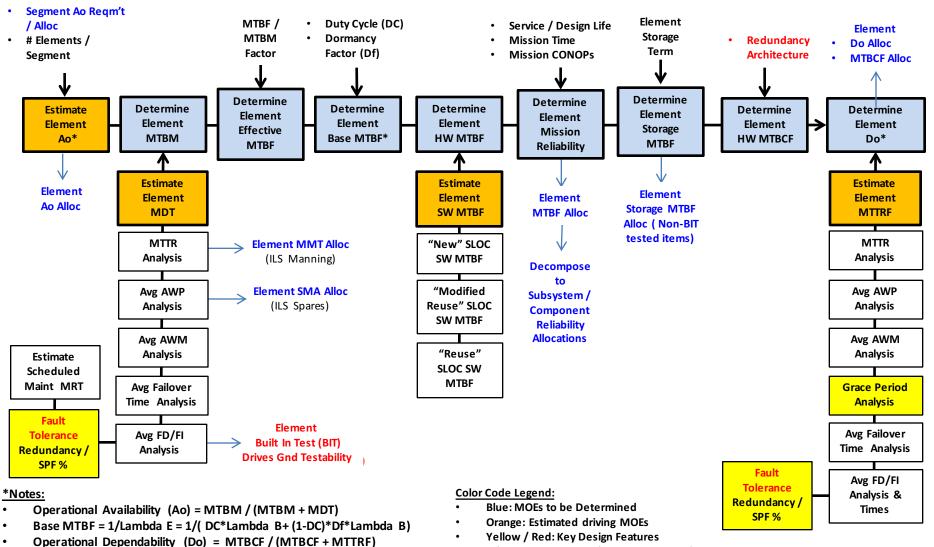


Key Design Feature (Highlighted)

Design Feature	Descriptions	Definition
Fault Restoration	MDT	Mean Down Time
	MTTR	Mean Time to Repair
	MTTRF	Mean Time to Restore Function
Fault Tolerance	Internal redundancy / margin	Within Element Components
	External redundancy / margin	Among Element Components
	Grace Period	Not a critical failure if recovered within accepted time unit
Fail Safe	Safe Mode	Defined by CONOPS, ADR / FMS
Fault Management	BIT	Built In Test
Operational Dependability	Do	Availability during the mission, does not include catastrophic failures

"Space Element" RMA&D Decomposition

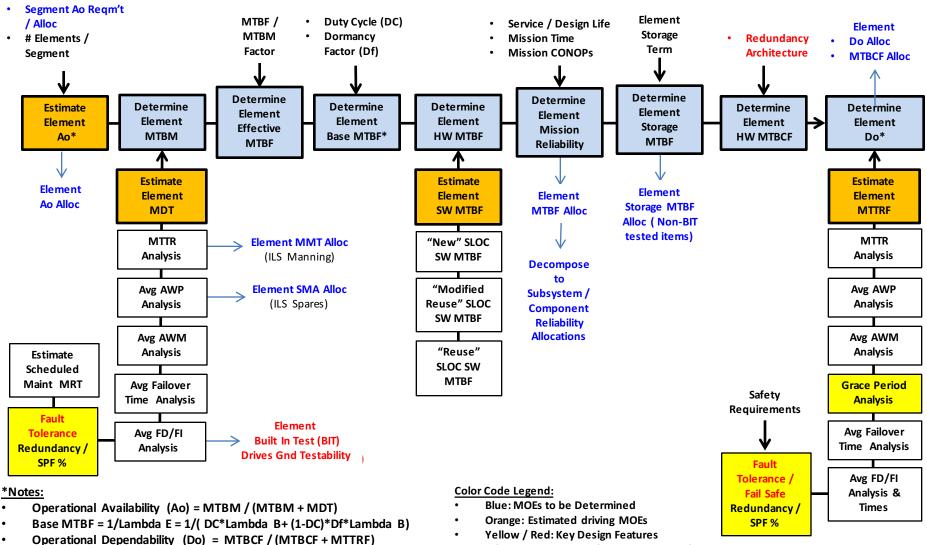
Non-Maintained / Limited Mission Recovery / Un-Manned



- Operational Availability (Ao) = MTBM / (MTBM + MDT)
- Base MTBF = 1/Lambda E = 1/(DC*Lambda B+ (1-DC)*Df*Lambda B)
- Operational Dependability (Do) = MTBCF / (MTBCF + MTTRF) and does not include catastrophic failure modes

- Orange: Estimated driving MOEs
 Vallow (Pade Key Design Feature)
- Yellow / Red: Key Design Features
- White: Supporting analyses to estimate driving MOEs

LOCKHEED MARTIN


"Space or USER <u>Ground Control Element</u>" RMA&D Decomposition Maintained / <u>Recoverable during Mission</u> / Manned LOCKHEED MARTIN

White: Supporting analyses to estimate driving MOEs

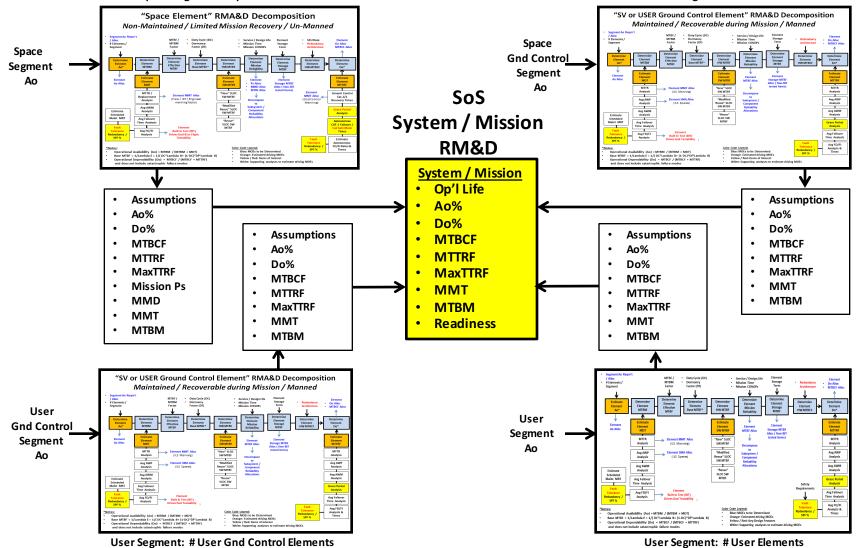
"User Element" RMA&D Decomposition

Maintained / Limited Recovery during Mission / Un-Manned

and does not include catastrophic failure modes

White: Supporting analyses to estimate driving MOEs

LOCKHEED MARTIN


Notional IoT SoS RMA&D

Space Segment: # Space Elements

Decomposition Summary

LOCKHEED MARTIN

SV Gnd Control Segment: # Gnd Elements Elements

System RMA&D Requirements are Decomposed / Allocated

© 2015 Lockheed Martin Corporation. All Rights Reserved

Key Design Feature Verification

LOCKHEED MARTIN

ltem	ΜΟΕ	Unit Level	Element Level	Segment Level	SoS
Fault Restoration	MTTR	Analysis	Test / Demo	n/a	n/a
Fault Restoration	MDT	Analysis	Test / Demo	n/a	n/a
Fault Restoration	MTTRF	Analysis	Test / Demo	n/a	n/a
Fault Tolerance	Internal Redundancy / Margin	Analysis / Test	Analysis / Test	n/a	n/a
Fault Tolerance	External Redundancy / Margin	Analysis	Analysis / Test	n/a	n/a
Fault Tolerance	Grace period	n/a	Analysis / Test	n/a	n/a
Fail Safe	Safe Mode	n/a	Analysis / Test	n/a	n/a
Fault Mgt	BIT	Analysis	Analysis / Demo	n/a	n/a
Operational Dependability	Do	n/a	Analysis / Demo	Demo	Demo

Key Design Feature Requirements can be Verified

Conclusions

- SoS RMA&D requirement decomposition process for Segments and Elements ensure that System / Mission requirements are met
- "Key design features" can be implemented within Elements
 Fault restoration, Fault tolerance, Fail Safe, Fault Management
- "Key design feature" requirements are verifiable by analysis & test

Backup Charts

© 2015 Lockheed Martin Corporation. All Rights Reserved


Acronym List

LOCKHEED MARTIN

Acronym	Definition	Acronym	Definition	Acronym	Definition
Ао	Operational availability	DTS	Detailed Traffic Sensing	MTBM	Mean time between maintenance
ADR	Anomaly detection and resolution	FD/FI	Fault Detection / Fault Isolation	MTTR	Mean time to repair
AWM	Awaiting maintenance	FMS	Fault management system	Ps	Probability of success
AWP	Awaiting parts	GEO	Geo- Synchronous	RMA&D	Reliability, Maintainability , Availability and Dependability
ATP	Acceptance test procedure	нพ	Hardware	SEU	Single event upset
BIT	Built in test	loT	Internet of Things	SLOC	Software lines of code
Cat-X	Category	LEO	Low Earth Orbit	SoS	System of System
СОММ	Communications	LHA / LHD	Amphibious assault ships	SPF	Single point failure
CONOPs	Concept of Operations	MaxTTRF	Max time to restore function	STVOL	Short takeoff and vertical landing
CTOL	Carrier take off and landing	MDT	Mean down time	SW	Software
CV	Carrier Vessel	MMD	Mean mission duration	SV	Space Vehicle
CVN	CV Nuclear	MMT	Mean maintenance time	TT&C	Telemetry, Tracking & Control
Dc	Duty cycle	MOE	Measure of effectiveness	UAV	Un-manned Air vehicle
Df	Dormancy Factor	MST	Micro Sat		
Do	Operational dependability	MTBF	Mean time between failure		

