#### **SESSION 3**

# DEPENDABILITY CHALLENGES FOR AIRBORNE VEHICLES

(CHAIR: ANDREA BONDAVALLI)

### "On the Security and Safety of Collaborative Intelligent Vehicles" or "An explosion of problems" Roberto Gallo, Unicamp, Kryptus - Brazil

Fly me to the moon .... Michael Hinchey, Lero - Ireland

# **ROBERTO GALLO**

#### Roberto started describing a few sophisticated threats

- Eaversdroppig of Keyboard
- Fake GPS
- Change Microcircuits
- Vulnerabilities of VxWorks



### And then Battlefield scenarios for drones UAVs

- 1. IFF (identification foe or friend)
- 2. Netcentric warfare system
- 3. Drone cyber security

### **FORTUNA FRAMEWORK**

From observations .....some of which controversial

- "The security of systems has a probabilistic nature (not the attacks);"
- (questions and discussion on the extent of probabilities in such security scenarios)

And from derived Properties.....

### **MODELS & ASSURANCE CASES**

#### build models (three models):

- Two are graph-based:
  - Model 1: Bit leakage
  - Model 2: Adversary path
- One based on Decision Theoretic Probabilistic ProLog DTProbLog

#### **Resulting in policies**

### **And Assurance cases**





# **QUESTIONS AND DISCUSSION**

**Probabilistic nature of the models** 

Where probabilities are appropriate for capturing reality and where deterministic behaviors apply.

Mohamed, Bill, John, Andrea....

### **MIKE HINCHEY**

Mike started from the big-bang....

..... EDSAC and the Differencial machine



- To get to challenges on Sofware engineering
- (besises usual increase of complexity and functionalities
- Performance and reaction times... Productivity and costs
- He pointed out at
- regular changes and evolving systems

# **EVOLVING CRITICAL SYSTEMS**

# LERO ECS Research Agenda: to build software that

(a) is highly reliable, and

(b) retains this reliability as it evolves, *without* incurring prohibitive costs.

#### **Key Focus Areas**

- >A: Methods & Standards for High Integrity Systems
- B: Adaptive & Autonomous Systems
- **C: Software Performance**
- D: Security & Privacy

### \_\_\_\_\_

# **SPACE EXPLORATION**

**Complex** and **expensive** software applications.

High Levels of Autonomy.

Significant consequences for failure.  $\rightarrow$  Critical

#### Three concept sub-missions:

Lander Amorphous Rover Antenna (LARA) Saturn Autonomous Ring Array (SARA) Prospecting Asteroid Mission (PAM)

#### **ECS Contributions in:**

Formal Methods

- Autonomic Computing
- Software Product Lines
- Automatic Code Generation

Mike described several lines of contribution, including automatic code 'derivation' for evolution



Swarm Technologies....

# **QUESTIONS AND DISCUSSION**

- **Hiro: Autonomic vs. Autonomous**
- **Elias: Dynamic code generation**
- Eliane: Continuous testing on the generated code and related issues...