

Aspects and Challenges on the Way to upcoming Automated Cars

Dr. Stefan Poledna

IFIP 10.4 WG June, 26th 2015 stefan.poledna@tttech.com

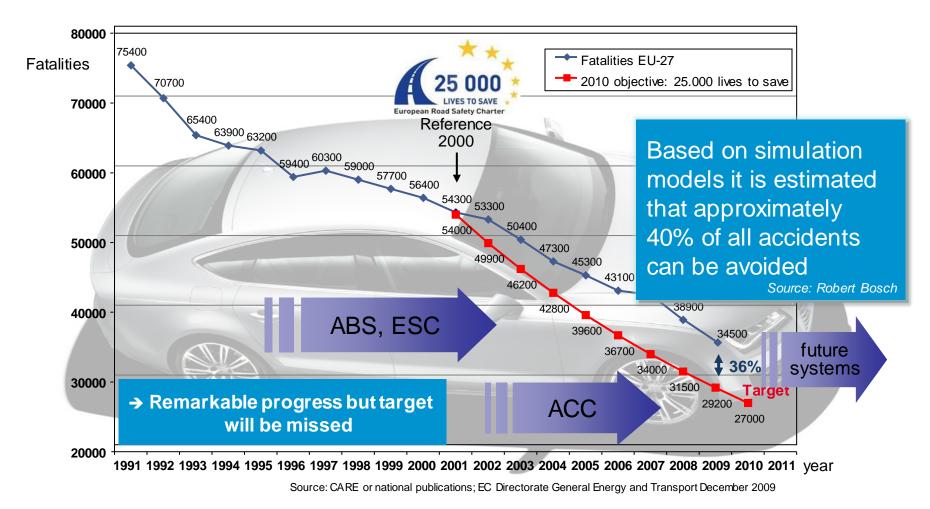
Content

Rationale for Automated Driving

System Classification

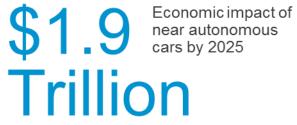
Challenges

A Time-Triggered Platform Approach


Further Challenges

Rationale for Autonomous Driving

Why Automated Driving: Safety


Evolution of European Road Fatalities (EU-27)

According to WHO: 50 million injuries in 2010, 1.2 million fatal injuries

Key Drivers: Quality Time & Economic Impact

Autonomous & Near **Autonomous Operations**

Source: McKinsey

traffic jams

parking

System Classification

System Classification by VDA

Driver carries out all lane holding and lane changes	Driver carries out all lane holding or lane changes	Driver must continuously monitor the system System handles lane holding and lane changes in a special application case	Driver needs no longer continuously monitor the system. Must potentially be available to take over System handles lane holding and changing in a specific application case. Detects limits of system and asks the driver to take over with sufficient	No driver necessary in special applications	System can handle all situations automatically throughout the trip. No driver needed.
				System can handle all situations automatically in the specific	
				application case	
	System handles the other function				
No intervening vehicle system active			warning		
Level 0 Driver only	Level 1 Assisted	Level 2 Partly automated	Level 3 Highly automated	Level 4 Fully automated	Level 5 Driverless

https://www.vda.de/de/themen/innovation-und-technik/automatisiertes-fahren.html

System Classification by NTSH

- Level 0: The driver completely controls the vehicle at all times.
- Level 1: Individual vehicle controls are automated, such as electronic stability control or automatic braking.
- Level 2: At least two controls can be automated in unison, such asadaptive cruise control in combination with lane keeping.
- Level 3: The driver can fully cede control of all safety-critical functions in certain conditions. The car senses when conditions require the driver to retake control and provides a "sufficiently comfortable transition time" for the driver to do so.
- Level 4: The vehicle performs all safety-critical functions for the entire trip, with the driver not expected to control the vehicle at any time. As this vehicle would control all functions from start to stop, including all parking functions, it could include unoccupied cars

<u>"U.S. Department of Transportation Releases Policy on Automated Vehicle Development"</u>. National Highway Traffic Safety Administration. 30 May 2013. Retrieved18 December 2013

Level 3 is current challenge

- Level 0: The driver completely controls the vehicle at all times.
- Level 1: Individual vehicle controls are automated, such as electronic stability control or automatic braking.
- Level 2: At least two controls can be automated in unison, such asadaptive cruise control in combination with lane keeping.
- Level 3: The driver can fully cede control of all safety-critical functions in certain conditions. The car senses when conditions require the driver to retake control and provides a "sufficiently comfortable transition time" for the driver to do so.
- Level 4: The vehicle performs all safety-critical functions for the entire trip, with the driver not expected to control the vehicle at any time. As this vehicle would control all functions from start to stop, including all parking functions, it could include unoccupied cars

<u>"U.S. Department of Transportation Releases Policy on Automated Vehicle Development"</u>. National Highway Traffic Safety Administration. 30 May 2013. Retrieved18 December 2013

State of

innovation

further

out

the art

Challenges

Challenges ahead

- Safety full authority over car by electronics
- Security no unauthorized access or (software) change
- Fail-operational cannot pass back control to driver immediately in case of component failures
- Software Integration complex SW for different parties with different safety criticality level to be integrated on one ECU
- Re-use Hugh invest in SW functionalities
- System complexity system needs to be analyzable, understandable and evolvable
- Accelerated development traditional automotive development process is too slow
- Addressing system cost

Automotive needs to go for Fail-Operational

Driver takes over control

Driver needs some time to be prepared for take-over

- System is no longer fail-safe
- Fail-operational behavior for limited time required

or System needs to reach safe state

Reaching a safe state is limiting functions that can be automated

Cost Challenge is calling for Software Reuse

Cost shift from ECU hardware to SW function development.

Development cost for advanced software functions, integration and validation is more than an order of magnitude higher than for conventional ECUs.

Comparison: ADAS Platform ECU vs. Chassis Control ECU

A Time-Triggered Platform Approach

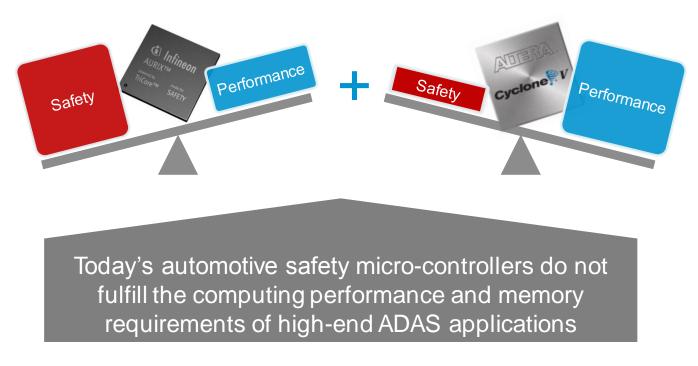
Layered Function Architecture with centralzed Fusion

Output	HMI Manager Movement Planning and Manager	Movement Planning and Management			
Applica- tions	Funktion 11 Funktion 10 Funktion 7 Funktion 7 Funktion 7 Funktion 1 Funktion 1				
Fusion and Recognition	Map Fusion Object Fusion Infrastructure Fusion	Framework			
Object detection	Sensor 10 Sensor 10 Sensor 10 Sensor 1 Sensor 1 Sensor 2 Sensor 1				
Basis	Framework/BSP/Driver				

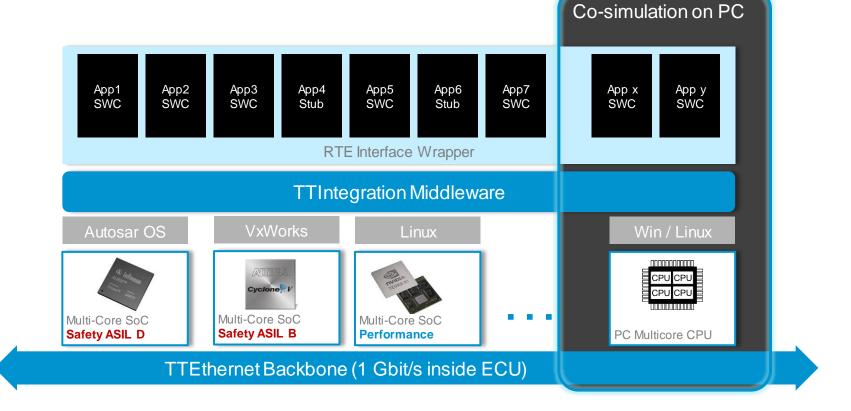
Actuators

Necessary Actuators for Automated Driving

- Electronic Stability Control
 - ► Hold management system
 - ► Decelleration management

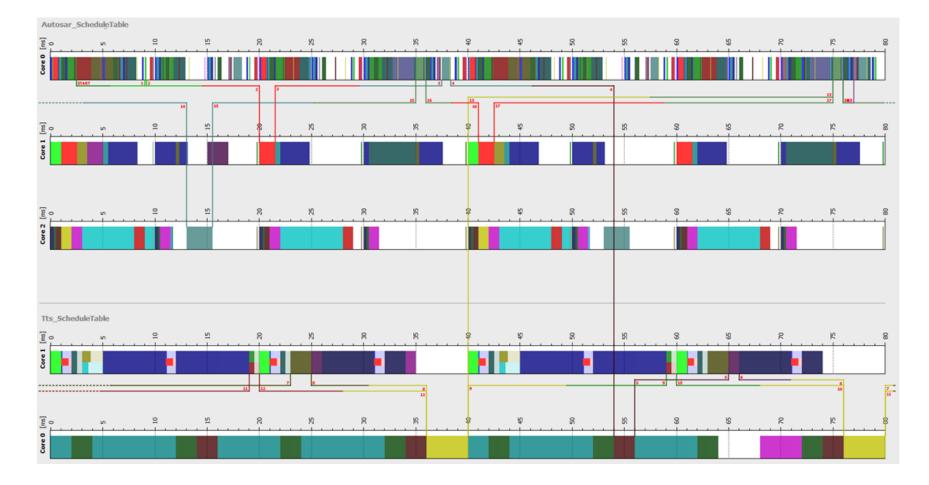

- Powertrain Coordination
- Shift-by-Wire
- Electric Power Steering

Address Safety and Performance at the same time

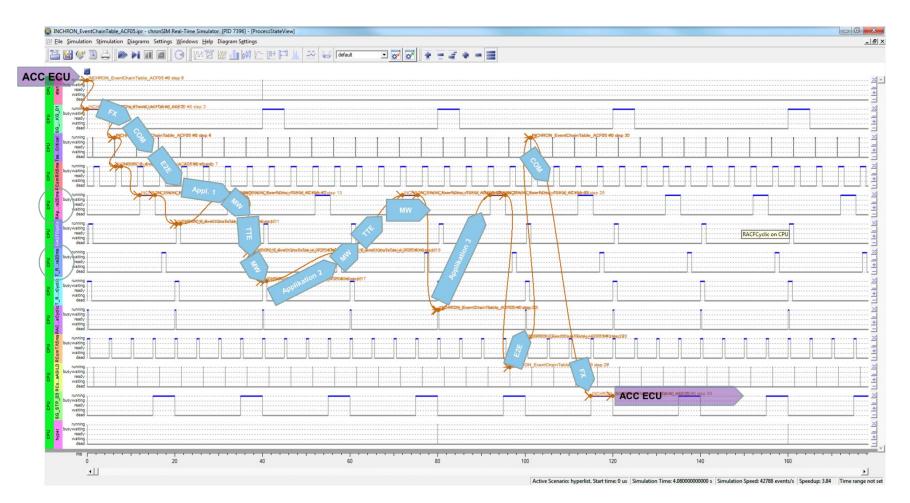

- Sensor processing and data fusion need highest performance
- Steering and braking require up to ASIL-D

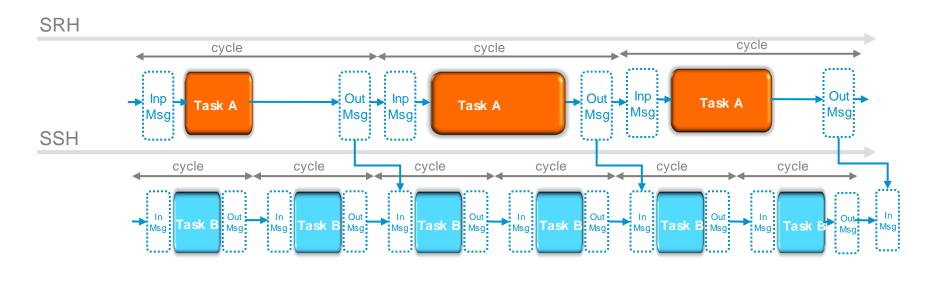
zFAS Platform unites Safety and Performance

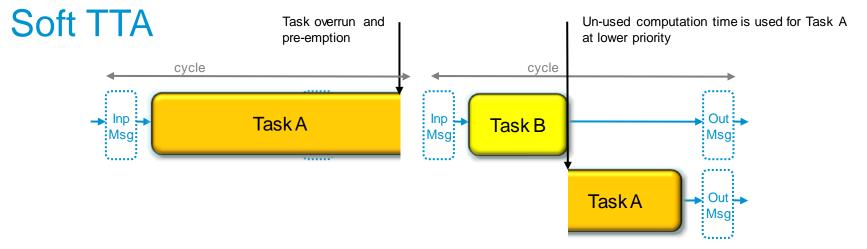
Select the right microcontrollers according to need



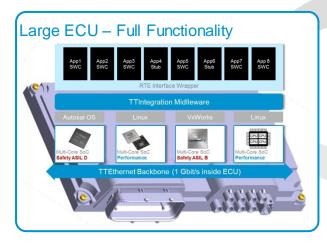
TTIntegration: Fully Location Transparent due to TTEthernet


Time-Triggered Data Flows between Synchronous Cores



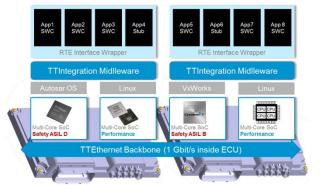

Time-Triggered Data Flow Example

TTIntegration: Scheduling and Communication based on TTEthernet



Scalability and Software Re-Use

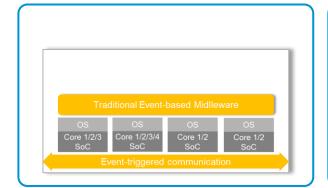
The internal Ethernet backbone allows easy scaling between entry level and full featured versions as well as between single ECU and multi ECU versions.



www.tttech.com

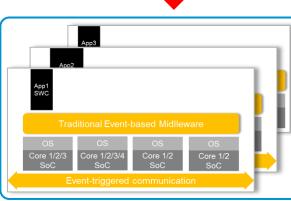
Split in two ECUs – Full Functionality

Integration of Software from several Sources


Requirements

- Parallel development path for several teams developing application
 functions (OEM, Tier-1, SW providers)
- Seamless path between testing of individual SWCs
- Seamless path between SIL test and test on "real"
- Support of "Black-box integration process" for key ε functions
 - \rightarrow IP-protection!

Traditional Integration Approach (best avoided)



4. Conflicts are reported back to function SW suppliers, applications have to be modified to meet the system's timing restrictions

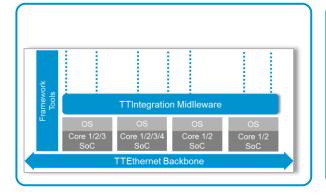
 Integration of platform without configuring execution frames

www.tttech.com

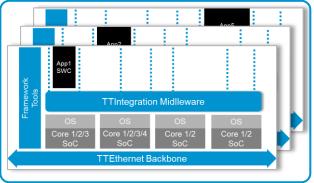
2. Applications are integrated and tested individually by SWC suppliers without timing and memory restrictions 3. All applications are integrated by the SWintegrator on the platform; conflicts start immediately as it is not clear who is causing problems and why

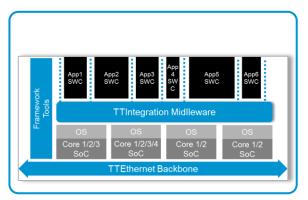
Core 1/2

Core 1/2


Core 1/2/3/4

Core 1/2/3

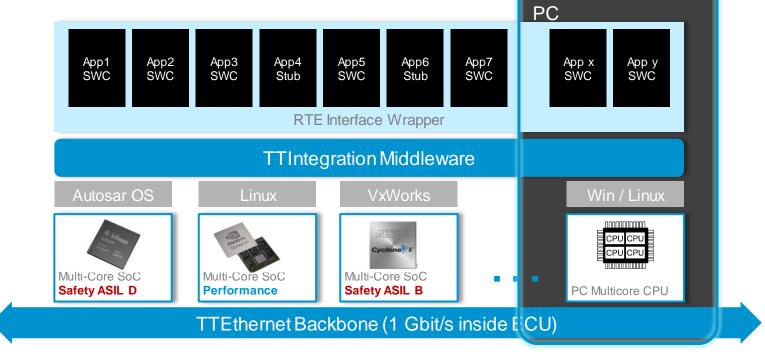

Robust Deterministic Integration


Robustness through clear allocation and monitoring of resources (memory, CPU, communication)

Parallel Integration to speed-up software development of multiple-software suppliers

Complete software integrated for functional testing

 TTTech integrates the platform and configures the execution boundaries for the applications.

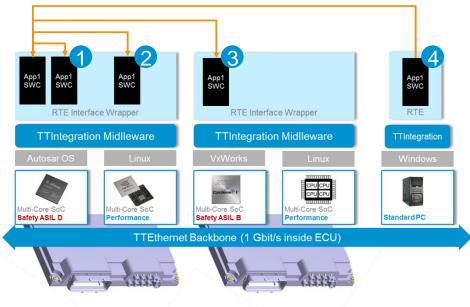

- 2. Applications are integrated and tested individually by the SWC suppliers into their respective execution boundaries.
- 3. All applications are integrated by TTTech and are immediately able to run together; violations by SWCs are detected easily.

Co-Simulation Support

Co-simulation on

- Ethernet backbone enables easy connectivity to PC's
- TTIntegration middleware available on PC
- Time-triggered approach hides timing differences between PC and ECU

Multiple Levels of Software Re-Use

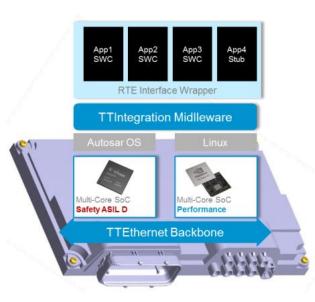


TTIntegration Middleware enables to

- 1 move SW-C between cores on the micro-controller
- 2 move SW-C between micro-controllers in the same ECU
- 3 move SW-C between ECUs
- move SW-C between ECU and simulation PC

Minimal re-testing

- no change in timing
- no change to source code necessary



Exhaustive Set of Features

- Time-synchronization (global / between SoCs)
- Scheduling (Time-Triggered, Soft-Time-Triggered, Event-Triggered)
- ECU lifecycle management
- Inter-ECU communication (FR, CAN, Ethernet)
- Intra-ECU communication
 (TTEthernet, Middleware, Key/Value Store)
- Diagnostics
- Software update Multistage flashing
- Safety mechanisms (ASIL-A to ASIL-D)
- Debug and calibration features
- Software-in-the-loop / Co-simulation tools
- Data recorder

• ...

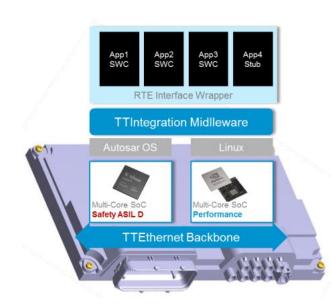
Tlech

Middleware Availability and Key Parameters today

Processing Units

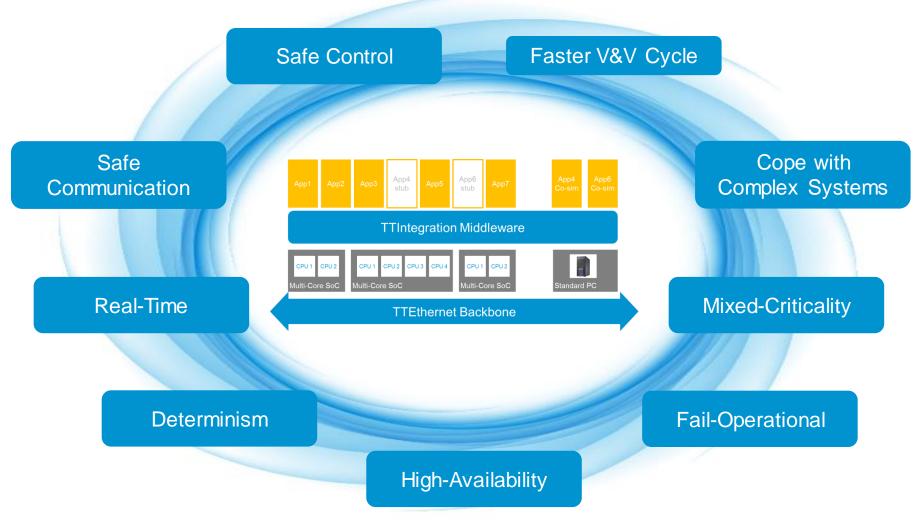
- Infineon Aurix, Altera Cyclone 5, Nvidia Tegra K1
- Fully portable

Operating Systems


• AUTOSAR, VxWorks, Linux, Windows

Application Supplier Landscape

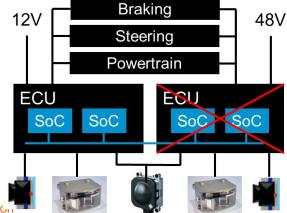
• 35 Application SW components from 12 suppliers


Tools

- Seamless ADTF integration
- All Linux-based debugging features on all hosts

Safety Platform Highlights

TTTech Confidential and Proprietary Information


TTA-Drive Fault-Tolerance Option

No Single Point of Failure – No Common Mode Failures

- Power supply e.g., 12V and 48V
- Communication redundant connections, resource monopolization, ...
- Environment mechanical stress, temperature, impact in case of accident, …
- Fault-Containment faults do not propagate across the whole systems, …
- Steering and braking need to be fail-operational

Two ECU's can be combined with Ethernet to form a fault-tolerant system for automated driving 2 Fault-Containment Regions = 2 physically separated ECUs

Ensuring Reliable Networks

 (\mathfrak{m})

Piloted Driving & Piloted Parking based on our platform will be implemented in the next Audi A8

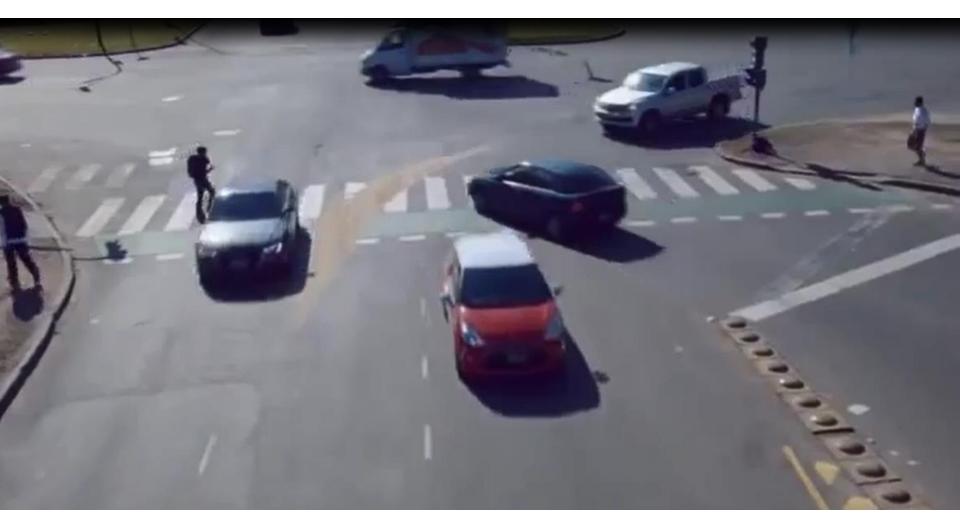
Further Challenges

Further Challenges

- Object classification and Sensor fusion for safety classical safety processes, e.g., ISO 26262, are not suitable
- Standardization of semantic interfaces for sensor fusion – input from sensors to fusion and fusion results
- Consumer defined semiconductors automotive is a much harsher environment calling for more reliability
- Validation is 400.000 km enough, real-test cases vs. synthetic, Peta Byte data bases, HIL systems with accelerated real-time, …
- Interacting Systems SoS strategy interaction between systems (human driven cars, automated cars)

Legal – during automated driving responsibility is with the car

And Finally


data collection:

- Street conditions
- Traffic conditions
- Weather conditions
- Construction work
- Traffic signs
- Where are drivers going, what are drivers doing
 What others do around the car

2 Gb/s

The Future?

Thech Ensuring Reliable Networks

Vienna, Austria (Headquarters) Phone +43 1 585 34 34-0 office@tttech.com

USA

Phone +1 978 933 7979 usa@tttech.com

Japan Phone +81 52 485 5898 office@tttech.jp

China Phone +86 21 5015 2925-0 china@tttech.com

www.tttech.com

Copyright © TTTech Computertechnik AG. All rights reserved.