
1

Fly me to the moon …

Professor Mike Hinchey

3

66 Years Ago …

4

EDSAC

•  650 instructions per second.

•  1024 17-bit words of memory in mercury ultrasonic delay lines.

•  Paper tape input and teleprinter output at 6 2/3 characters per second.

•  3000 valves, 12 kW power consumption, occupied a room 5m by 4m.

•  "Operating system" occupied 31 words of read-only memory.

•  Early use to solve problems in meteorology, genetics and X-ray
crystallography.

5

Difference Engine

6

Motivation

Errata, detected in Taylor’s Logarithms. London: 4to, 1972 [sic]
…
6  Kk Co-sine of 14.18.3 – 3398 – 3298

 Nautical Almanac (1832)
…
In the list of ERRATA detected in Taylor’s Logarithms, for cos. 4 18’ 3’’

read cos. 14 18’2’’.
Nautical Almanac (1833)

ERRATUM of the ERRATUM of the ERRATA of TAYLOR’S Logarithms.

For cos. 4 18’3’’, read 14 18’ 3’’.
Nautical Almanac (1836)

First Programmer

7

Augusta Ada King, Countess of Lovelace

8

Challenges for Software Engineering

•  Increases in demand for greater, more complex functionality;

•  Stricter (required and desirable) constraints on performance and
reaction times;

•  Attempts to increase productivity and reduce costs while constantly
pushing requirements to the limit;

•  Requirement of regular change and evolving systems.

9

Evolution

Any intelligent fool can make things bigger and
more complex …

It takes a touch of genius and a lot of courage to
move in the opposite direction.

 Albert Einstein

10

Evolving Critical Systems

Evolving systems are software systems which exhibit change over time.

Software is supposed to change…
otherwise it would be in the hardware!

11

Evolving Critical Systems

•  have evolved from legacy code and legacy systems, or

•  result from a combination of existing component-based systems,
possibly over significant periods of time, or

•  evolve as a result of a focused and intentional change in organization
and architecture to exploit newer techniques believed to be beneficial;

•  they require that the system adapt and evolve at run-time in order to
react to changes in the environment or to meet necessary constraints
on the system that were not previously satisfied and possibly not
previously known.

12

Critical Systems

Critical systems are systems where

•  failure or malfunction will lead to significant negative consequences;
•  these systems may have strict requirements for security and safety,

to protect the user or others;
•  alternatively, these systems may be critical to the organization’s

mission, product base, profitability or competitive advantage.

13

ECS Research Agenda

An ECS Research Agenda addresses several core research topics in the
evolving critical systems field.

The central research topic is building software that
(a) is highly reliable, and
(b) retains this reliability as it evolves, without incurring prohibitive

costs.

14

PEA+T

15

Peat

16

PEA+T

17

Sensors Effectors

Analyze Plan

Monitor
Execute

Topology

Recent Activity Log Policy
Calendar Knowledge

Analysis Engines

Policy Validations

Policy Resolution

Rules Engines

Policy Interpreter

Policy Transforms

Plans Generators

Workflow Engine

Service Dispatcher

Scheduler Engine
Filters

Simple Correlators

Metric Managers
Distribution Engine

Source: IBM, AC Blueprint 2003

MAPE

Evolving Critical Systems

Evolving
•  Software is meant to change, both at design/revision time and at run-time
•  Lero’s research focuses on methods and tools for designing software that can

be changed or that can change itself without degradation

Critical
•  Much of today’s software is mission-, safety- or business-critical
•  Lero is researching methods and tools to improve the integrity of and

confidence levels in critical software

Systems
•  Expertise in software engineering needs to be coupled with domain

knowledge
•  Lero has existing partnerships & expertise in medical devices, space, future

cities and financial services
•  We will continue to seek domain-related partners for collaborative research

18

19

Key Focus Areas

"   A: Methods & Standards for High Integrity Systems
–  Lean, Agile & Global methods
–  Open Sourcing & Innovation
–  Standardised SW Development processes
–  Model-based approaches
–  Formal methods & safety use cases

"   B: Adaptive & Autonomous Systems
–  Systems that learn & respond to their environments

"   C: Software Performance
–  Large complex systems
–  Multicore embedded & massively parallel systems

"   D: Security & Privacy
–  New approaches to security and privacy and the trade-offs between them
–  Digital forensics

Hub and Spoke Model

20

21

An ECS Scenario

•  Space Exploration
•  Some of the most complex and expensive software

applications to date.
•  High Levels of Autonomy.
•  Significant consequences for failure.

Requirements Effort vs. Cost Overrun

22

Swarm Technologies

•  Inspired by swarms of bees and flocks of birds in nature;

•  Many application areas:
–  drug discovery;
–  communication systems;
–  environmental monitoring;
–  exploration.

23

Coordinated swarms of smaller spacecraft will offer:

•  More effective use of solar power;

•  Access to areas where large craft could not go;

•  Ability to perform more complex tasks;

•  Greater accuracy and flexibility.

24

Autonomous NanoTechnology Swarm

Three concept sub-missions:

1.  Lander Amorphous Rover Antenna (LARA)

2.  Saturn Autonomous Ring Array (SARA)

3.  Prospecting Asteroid Mission (PAM)

25

Tet Walkers

26

LARA Walkers

27

28

ANTS Concept Mission - PAM

PAM : the Movie

29

ECS Contributions

1.  Formal Methods

2.  Autonomic Computing

3.  Software Product Lines

4.  Automatic Code Generation

Lero©
2009	

	

30

31

Model of Formal Method

v

is a set of (partial) transition functions
where each transition function maps

⎭
⎬
⎫

⎩
⎨
⎧

=Φ
ocessason

geceiveMessaeSendMessag
Pr,Re

,Re,

MemoryOutputInputMemory ×→×

is a set of (partial) transition functions
where each transition function maps

⎭
⎬
⎫

⎩
⎨
⎧

=Φ
ocessason

geceiveMessaeSendMessag
Pr,Re

,Re,

MemoryOutputInputMemory ×→×

goces
goces
goces
goces
goces

goces
easoning

easoning
ingCommunicateceive

ingCommunicateceive
ingCommunicateceive

ingCommunicat
ingCommunicat

ingCommunicatingCommunicat

sinPr.nRemediatioProcessing:17
sinPr.RecoveryProcessing:16
sinPr.DiagnosisProcessing:16
sinPr.PredictionProcessing:17
sinPr.GenerationProcessing:17

sinPr.StorageSortingAndProcessing:17
R.eactiveReasoningR:50

R.eliberatveReasoningD:50
.orMessageErrR:1

.derMessageLeaR:50
.kerMessageWorR:50

.eErrorSendMessag:1
.eLeaderSendMessag:50

.eWorkerSendMessag:50

2

2

2

2

2

2

2

2

1

2

2

1

2

2

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

+

+

+

+

+

+

+

+

+

+

+

+

+

≡

lkklkklk nmnmn +++ +==+ ωωωωω
kkkkk nmmnmn ωωωωω +=+=+)(

goces
goces
goces
goces
goces

goces
easoning

easoning
ingCommunicateceive

ingCommunicateceive
ingCommunicateceive

ingCommunicat
ingCommunicat

ingCommunicatingCommunicat

sinPr.nRemediatioProcessing:17
sinPr.RecoveryProcessing:16
sinPr.DiagnosisProcessing:16
sinPr.PredictionProcessing:17
sinPr.GenerationProcessing:17

sinPr.StorageSortingAndProcessing:17
R.eactiveReasoningR:50

R.eliberatveReasoningD:50
.orMessageErrR:1

.derMessageLeaR:50
.kerMessageWorR:50

.eErrorSendMessag:1
.eLeaderSendMessag:50

.eWorkerSendMessag:50

2

2

2

2

2

2

2

2

1

2

2

1

2

2

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

+

+

+

+

+

+

+

+

+

+

+

+

+

≡

lkklkklk nmnmn +++ +==+ ωωωωω
kkkkk nmmnmn ωωωωω +=+=+)(

otherwise
AGEERROR_MESS

RTH(msg) = EAif
AGEEARTH_MESS

RKER(msg) = WOif
SAGEWORKER_MES

SSENGER(msg) = ME if
MESSAGEMESSENGER_

ADER(msg) = LEif
SAGELEADER_MES

msginleaderCOMLEADER

msgconvi

msgconvi

msgconvi

msgconvi

msgconvi

convi

sender

sender

sender

sender
 case

?._

,,

,,

,,

,,

,,

, →=

otherwise
AGEERROR_MESS

RTH(msg) = EAif
AGEEARTH_MESS

RKER(msg) = WOif
SAGEWORKER_MES

SSENGER(msg) = ME if
MESSAGEMESSENGER_

ADER(msg) = LEif
SAGELEADER_MES

msginleaderCOMLEADER

msgconvi

msgconvi

msgconvi

msgconvi

msgconvi

convi

sender

sender

sender

sender
 case

?._

,,

,,

,,

,,

,,

, →=),,(' ingCommsTracklModesGoalmemory ʹ′ʹ′=),,(' ingCommsTracklModesGoalmemory ʹ′ʹ′=

217ProcessingRemediation

216ProcessingRecovery

216ProcessingDiagnosis

217ProcessingPrediction

217ProcessingGeneration

217ProcessingSortingAndStorage

Processing

250ReasoningReactive

250ReasoningDeliberatve
Reasoning

11ReceiveMessageError

250ReceiveMessageLeader

250ReceiveMessageWorker

11SendMessageError

250SendMessageLeader

250SendMessageWorker

Communicating

Identity

pfActions leading to the agent
stateAgent State

217ProcessingRemediation

216ProcessingRecovery

216ProcessingDiagnosis

217ProcessingPrediction

217ProcessingGeneration

217ProcessingSortingAndStorage

Processing

250ReasoningReactive

250ReasoningDeliberatve
Reasoning

11ReceiveMessageError

250ReceiveMessageLeader

250ReceiveMessageWorker

11SendMessageError

250SendMessageLeader

250SendMessageWorker

Communicating

Identity

pfActions leading to the agent
stateAgent State

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

5.5.00
25.25.5.0
25.25.5.0
25.25.5.0

P

Communicating

Reasoning

Processing
Initial
state

0.5

0.5

0.5

1

0.25

0.25

0.25

0.25 Communicating

Reasoning

Processing
Initial
state

0.5

0.5

0.5

1

0.25

0.25

0.25

0.25

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

5.5.00
25.25.5.0
25.25.5.0
25.25.5.0

P

Communicating

Reasoning

Processing
Initial
state

0.5

0.5

0.5

1

0.25

0.25

0.25

0.25 Communicating

Reasoning

Processing
Initial
state

0.5

0.5

0.5

1

0.25

0.25

0.25

0.25

[Processing] SendMessage (Leader, Worker) [Communicating]

[Reasoning] SendMessage (Leader,Worker)[Communicating]

[Communicating]ReasoningDeliberatve(Leader)[Reasoning]

[Processing] SendMessage (Leader, Worker) [Communicating]

[Reasoning] SendMessage (Leader,Worker)[Communicating]

[Communicating]ReasoningDeliberatve(Leader)[Reasoning]

Swarm Formal Method Model and Outline

32

ASSL Specification

ECS Contributions

1.  Formal Methods

2.  Autonomic Computing

3.  Software Product Lines

4.  Automatic Code Generation

33

Autonomic Computing

Rest and Digest

sympathetic
(SyNS) 	

parasympathetic
(PaNS)

.

Fight or Flight

Inspiration from the human/mammalian autonomic nervous system.

34

Autonomic Agent (Mobile agent)	
 Autonomic Agent Apoptosis Controls	
M C	

The Autonomic Environment	

AE	

Autonomic Communications Channel	

MC	

AM	

S*	

S*	

S*	

S*	

S*	
S*	

S*	
S*	

AE	

MC	

AM	

AE	

MC	

AM	

S*	

S*	

S*	

S*	

S*	

S*	

S*	

S*	

S*	

S*	

Zzz	

L
C	

I am
alive	

I am
healthy	

Stay awake	

sSleep	

ALice	

35

ECS Contributions

1.  Formal Methods

2.  Autonomic Computing

3.  Software Product Lines

4.  Automatic Code Generation

36

37

Feature Model

Explore
Universe

Explore and
Discover

Set Objetive
and Approach

Flight
Search

new
objective

Inform
objective

Evaluate
Interest

Avoid
Crashing

Avoid run a
out of
power

Protect
from solar

storms
measure

image

Send Data
Earth

Self-
Protection

A
b

st
ra

ct
io

n

L
ay

er
 1

A
b

st
ra

ct
io

n

L
ay

er
 2

A
b

st
ra

ct
io

n

L
ay

er
 4

A
b

st
ra

ct
io

n

L
ay

er
 3

Measure
solar storms

Switch off
sub-sytems

Use sail as
a shield

...

...

...

...

...
...

Move

Snake Amoeba Rolling

Walk

Gas
prop.

Use Sail
to Orbit

and flight

Analyse

measure
X-ray

Mandatory Optional

At least one
of them

Only one
of them

Digital
Camera

Optical
Camera

If father present, the heir is:

Dependency

ECS Contributions

1.  Formal Methods

2.  Autonomic Computing

3.  Software Product Lines

4.  Automatic Code Generation

38

39

Requirements to Design to Code (R2D2C)

Requirements
expressed as
scenarios

Code Models Existing code
generating tools

Existing model
extraction (reverse
engineering) tools

Mathematical laws
of concurrency

(reversed)

40

Current Status

41

Benefits of the Method

•  Automation of entire development process;

•  Significant increase in quality;

•  Ability to do formal proof on properties of implementations;

•  Ability to do formal proof of correctness;

•  Automated means for requirements analysis;

•  Guaranteed correspondence between requirements and their
implementation as code.

42

Applications

•  End-to-end automatic code generation of provably correct systems;

•  Automatic reimplementation after any requirements change;

•  Exploiting re-use across platforms;

•  Reverse engineering legacy systems to a mathematically sound model;

•  Analysis and documentation of existing systems (e.g., expert systems);

•  Re-engineering of legacy systems to a provably correct new implementation.

43

Domains (to date)

•  Agent Based Systems;

•  Wireless Sensor Networks ;

•  ANTS;

•  Verification of Robotic Procedures (cf. Hubble Space Telescope Robotic
Servicing Mission).

44

45

HRSM Procedures

46

HRSM Procedures

47

48

49

50

⇒/ 	

Caveat

51

Conclusions

•  Software must evolve.

•  There is a tension between reliability, predictability and cost and this
need for evolution.

•  There is a need for an Evolving Critical Systems research effort.

•  Lero and others are driving that effort.

52

Any problem in computer science can be
solved with another layer of indirection.

But that usually will create another problem.

David Wheeler

53

Thank You

http://www.lero.ie/ecs/whitepaper

