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Background	

w Development of a many-core system to 
implement a centralized ECU for critical 
automotive applications 
n  NoC based hardware 
n  Dependable task execution scheme 

w This progress report 
n  Recent evaluation results of the dependable 

task execution scheme 
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w  Duplicated execution, comparison, and pair-
reconfiguration 

Dependable task execution scheme 
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Dependable task execution scheme 

w  Duplicated execution, comparison, and pair-
reconfiguration 

n  Active tasks are also re-executed 
l  Transient errors can be masked 
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6) The I/O core then decides the final comparison result and issues actuator output signals to the outside of the chip when
there is no mismatch. If there is a mismatch, the retry-and-decision phase starts. The I/O core specifies the same task
performed by the same processor cores and an additional processor core so that those three processor cores compose
a TMR. Then, the operation is repeated from the above 2.

Figure 3 shows how the system works under a non-faulty condition. As shown in Figure 3, a processor core Px0
(x = 0, 1, 2) is coupled with a processor core Px1 as a pair, resulting in three pairs. In the pair phase, two processor
cores in each pair perform two identical copies of a specified task and send their results to the I/O core. The times when
processor cores start the specified task are different since the latency from the I/O core to each processor core through the
on-chip networks is different. The I/O core gathers computation results from processor cores and compares them. Normally,
all the results match as shown in rounded rectangle in Figure 3. Thus, the pair phase is continued.

C. Fault location mechanism

If a fault is detected by a mismatch, the retry-and-decision phase starts. The mismatched pair and one of other processor
cores which stores the mismatched task compose a TMR. Then, the I/O core sends the same data which was sent in the
pair phase to the three processor cores and gathers their results. Figure 4 shows the operation of the proposed scheme when
a transient fault occurs. The initial configuration is the same as that shown in Figure 3. However, at the first comparison, it
is recognized that the two processor cores P00 and P01 did not produce the same result. For the retry-and-decision phase,
processor cores P00, P01, and P10 compose a TMR. Note that P10 has task A in its private memory as shown in Figure 2.
This makes it possible to detect whether the fault was transient or permanent. As task A encountered a problem it must be
run again after the first comparison. If no mismatches are found at the second comparison, the fault detected at the first
comparison can therefore be assumed to be transient. This means that the next tasks can be performed without altering the
processing pairs as shown in Figure 4.
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Figure 4. Transient fault operation.
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Figure 5. Permanent fault operation.

Figure 5 shows the operation of the proposed system when a permanent fault occurs. From the figure, it can be seen that
the first two operations between the I/O core and processor cores are the same as those shown in Figure 4. At the second
comparison, if a permanent fault occurred in processor core P00, two mismatches would exist in the TMR; P00 <> P01 and
P00 <> P10. Thus, the processor core P00 can be confirmed as faulty and the remaining five cores would then be able to
compose three pairs after the second comparison. In this case, processor cores P01 and P10 compose a new pair, that is, the
processor core P10 performs both task B and task A sequentially. Thus, in the next pair phase, the I/O core compares two
tasks B and C at the first comparison and then compares task A at the second comparison as shown in Figure 5. However,
the deadline period is assumed to be enough long to execute three tasks (as mentioned later) and comparisons sequentially.
Thus, performance degradation does not occur.

According to the proposed scheme, the entire system achieves graceful degradation. If a permanent fault occurs in
processor core P01 after the above condition shown in Figure 5, processor cores P10 and P11 perform both task B and
task A sequentially as shown in Figure 6. In this case, if a permanent fault occurs in either P10 or P11, the entire system
is considered to be down since the remaining number of processor cores which can perform task A is only one, and thus
the comparisons cannot be performed. On the other hand, in a fortunate case, it can be allowed that N processor cores get
failed in a 2N core NoC-based MPSoC. Figure 7 shows the operation after processor cores P00, P10, and P20 have gotten
failed in the previous configuration. All the remaining cores P01, P11, and P21 perform two tasks sequentially. The I/O
core compares their results after receiving the second set of results. Normally, all the results match as shown in rounded
rectangle.

Figure 8 shows the operation when a transient fault occurs. At the first comparison it is recognized that one of three
comparison results is a mismatch. In this case, there is no redundant cores to execute the mismatched task. Thus, the
mismatched task is re-executed on the same cores as shown in Figure 8. If no mismatch is found at the second comparison,

Control cycle	



Static / Redundant Task Allocation  
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Static / Redundant Task Allocation  
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IO core duplication	 

w  IO core plays simple but important roles 
n  Implemented by hardware or a small processor 
n  Simple crash fault assumed 

l  Fixed duplex configuration 
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w How and for what does it work better?	
n  Conventional methods	

l  Lock-step pair	
l  TMR with a spare 

 
 

	

	

 
 
   	

Question	 
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w How and for what does it work better?	
n  Conventional methods	

l  Lock-step pair	
l  TMR with a spare 
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voter	in	 out	

TMR with a spare	

Reconfiguration with synchronization needed	



Question	 
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w How and for what does it work better?	
n  Conventional methods	

l  Lock-step pair	
l  TMR with a spare 

w Analytical evaluation on abstracted models 
n  Parameters used in this report 

l  #core：8　（Failure rate λ＝10000 fit）	

l  #task：10　（Execution time: T）	

l  Task graph concurrency: 2-4 
l  Control cycle time : CT  
   (Down unless completed within CT)　	



Our method	 

w Task graph 1	

n  Concurrency: 3	
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Calculation of reliability	 

w  For given CT	
n  Condition of “down” is decided	

l  Eg. if CT=6T, the system goes down when 5 cores go faulty	

w  Markov Chains	

n  5T≤CT<6T	

n  6T≤CT<8T	

n  8T≤CT<11T	

	

n  CT≥11T	
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Lock-step pairs	 

 
 
w Type 1 

n  After one fault occurs, both LS1 and LS2 are 
still used for the assigned tasks 

w Type 2 
n  After one fault occurs, only fault-free LS is 

used for the whole tasks	

15	

LS1	 LS2	
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Calculation of reliability	 

w Markov chain for Type1 
n  CT≥5T 

16	
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Calculation of reliability	 

w Markov chain for Type2 
n  5T≤CT<10T 

n  CT≥10T 
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w Type 1 

n  After one fault occurs, both TMR_S1 and 
TMR_S2 are still used for the assigned tasks 

w Type 2 
n  After one fault occurs, only fault-free TMR_S is 

used for the whole tasks	

TMR with a spare	 
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TMR_S1	 TMR_S2	
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Calculation of reliability	 

w Markov chain for Type1 
n  CT≥5T  
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Calculation of reliability	 

w Markov chain for Type2 
n  5T≤CT<10T 

n  CT≥10T 
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Comparison of average failure rates	 

w Task graph 1 
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Diag. & Reconf. components 	 

w Proposed： λD 
n  I/O core 

w LS2： λL 
n  Comparators 
n  I/O 

w TMR_S： λT 
n  Voters, Reconfiguration circuits 
n  I/O 

w λ >> λD > λT > λL 
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Diag. & Reconf. components 	 

w  For various failure rates of Diag. & Reconf. 
components (Task graph1, CT=8T) 	
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Our method 



Summary	 

w  This analysis suggests	

n  For large CT	

l  Our method achieves highest reliability 	
n  With high performance cores	

l  Task execution times become smaller	
l  CT becomes larger relatively	

w Our method has unique characteristics 
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Performance contributes improvement of reliability	


