
Evaluation of dependable task execution
scheme for many-core systems	

Tomohiro Yoneda

National Institute of Informatics

Masashi Imai
Hirosaki Univ.	

Takahiro Hanyu
Tohoku Univ.	

Hiroshi Saito
Univ. of Aizu	

Kenji Kise
Tokyo Tech.

Background	

w Development of a many-core system to
implement a centralized ECU for critical
automotive applications
n  NoC based hardware
n  Dependable task execution scheme

w This progress report
n  Recent evaluation results of the dependable

task execution scheme

2015/1/26 IFIP WG 10.4 2

w  Duplicated execution, comparison, and pair-
reconfiguration

Dependable task execution scheme

2015/1/26 IFIP WG 10.4 3

Task A	 Task A	

Task A
executed by
this pair	

Task A results compared

Task B	 Task B	

Task B
executed by
this pair	

Task B results compared

Task C	 Task C	

Task B
executed by
this pair	

Task C results compared	

Dependable task execution scheme

w  Duplicated execution, comparison, and pair-
reconfiguration

n  Active tasks are also re-executed
l  Transient errors can be masked

2015/1/26 IFIP WG 10.4 4

6) The I/O core then decides the final comparison result and issues actuator output signals to the outside of the chip when
there is no mismatch. If there is a mismatch, the retry-and-decision phase starts. The I/O core specifies the same task
performed by the same processor cores and an additional processor core so that those three processor cores compose
a TMR. Then, the operation is repeated from the above 2.

Figure 3 shows how the system works under a non-faulty condition. As shown in Figure 3, a processor core Px0
(x = 0, 1, 2) is coupled with a processor core Px1 as a pair, resulting in three pairs. In the pair phase, two processor
cores in each pair perform two identical copies of a specified task and send their results to the I/O core. The times when
processor cores start the specified task are different since the latency from the I/O core to each processor core through the
on-chip networks is different. The I/O core gathers computation results from processor cores and compares them. Normally,
all the results match as shown in rounded rectangle in Figure 3. Thus, the pair phase is continued.

C. Fault location mechanism

If a fault is detected by a mismatch, the retry-and-decision phase starts. The mismatched pair and one of other processor
cores which stores the mismatched task compose a TMR. Then, the I/O core sends the same data which was sent in the
pair phase to the three processor cores and gathers their results. Figure 4 shows the operation of the proposed scheme when
a transient fault occurs. The initial configuration is the same as that shown in Figure 3. However, at the first comparison, it
is recognized that the two processor cores P00 and P01 did not produce the same result. For the retry-and-decision phase,
processor cores P00, P01, and P10 compose a TMR. Note that P10 has task A in its private memory as shown in Figure 2.
This makes it possible to detect whether the fault was transient or permanent. As task A encountered a problem it must be
run again after the first comparison. If no mismatches are found at the second comparison, the fault detected at the first
comparison can therefore be assumed to be transient. This means that the next tasks can be performed without altering the
processing pairs as shown in Figure 4.

time

I/O core

P00

P01

P10

P11

P20

P21

Task A

Task A

Task B

Task B

Task C

Task C

 deadline period

Task A

Task A

Task B

Task B

Task C

Task C

Task A

Task A

Task A

A: P00 = P01
B: P10 = P11
C: P20 = P21

A: P00 = P01
A: P00 = P10
A: P01 = P10

A: P00 <> P01
B: P10 = P11
C: P20 = P21

Figure 4. Transient fault operation.

I/O core

P00

P01

P10

P11

P20

P21

Task A

Task A

Task B

Task B

Task C

Task C

 deadline period

Task A

Task B

Task B

Task C

Task C

Task A

Task A

Task A

Task A

A:P01 = P10

B: P10 = P11
C: P20 = P21

A: P00 <> P01
B: P10 = P11
C: P20 = P21

A: P00 <> P01
A: P00 <> P10
A: P01 = P10

time

Figure 5. Permanent fault operation.

Figure 5 shows the operation of the proposed system when a permanent fault occurs. From the figure, it can be seen that
the first two operations between the I/O core and processor cores are the same as those shown in Figure 4. At the second
comparison, if a permanent fault occurred in processor core P00, two mismatches would exist in the TMR; P00 <> P01 and
P00 <> P10. Thus, the processor core P00 can be confirmed as faulty and the remaining five cores would then be able to
compose three pairs after the second comparison. In this case, processor cores P01 and P10 compose a new pair, that is, the
processor core P10 performs both task B and task A sequentially. Thus, in the next pair phase, the I/O core compares two
tasks B and C at the first comparison and then compares task A at the second comparison as shown in Figure 5. However,
the deadline period is assumed to be enough long to execute three tasks (as mentioned later) and comparisons sequentially.
Thus, performance degradation does not occur.

According to the proposed scheme, the entire system achieves graceful degradation. If a permanent fault occurs in
processor core P01 after the above condition shown in Figure 5, processor cores P10 and P11 perform both task B and
task A sequentially as shown in Figure 6. In this case, if a permanent fault occurs in either P10 or P11, the entire system
is considered to be down since the remaining number of processor cores which can perform task A is only one, and thus
the comparisons cannot be performed. On the other hand, in a fortunate case, it can be allowed that N processor cores get
failed in a 2N core NoC-based MPSoC. Figure 7 shows the operation after processor cores P00, P10, and P20 have gotten
failed in the previous configuration. All the remaining cores P01, P11, and P21 perform two tasks sequentially. The I/O
core compares their results after receiving the second set of results. Normally, all the results match as shown in rounded
rectangle.

Figure 8 shows the operation when a transient fault occurs. At the first comparison it is recognized that one of three
comparison results is a mismatch. In this case, there is no redundant cores to execute the mismatched task. Thus, the
mismatched task is re-executed on the same cores as shown in Figure 8. If no mismatch is found at the second comparison,

Control cycle	

Static / Redundant Task Allocation

2015/1/26 IFIP WG 10.4 5

P0	

T0	

T1	 T1	

T2	T2	

T0	

T1	

T2	

T1	

T2	

T0	 T0	

Stand-by
Inactive

Active

T0	

T2	

T1	

from IO	

to IO	

Task graph	

P1	 P2	 P3	 P4	 P5	

T2	

Static / Redundant Task Allocation

2015/1/26 IFIP WG 10.4 6

P0	

T0	

T1	 T1	

T2	T2	

T0	

T1	 T1	

T0	
T0	

T2	

T1	

from IO	

to IO	

Task graph	

P1	 P2	 P3	 P4	 P5	

T0	

T2	

T2	

Static / Redundant Task Allocation

2015/1/26 IFIP WG 10.4 7

P0	

T0	

T1	 T1	

T2	T2	

T0	

T1	 T1	

T0	

T2	

T1	

from IO	

to IO	

Task graph	

P1	 P2	 P3	 P4	 P5	

T0	

T2	

T0	

Alert should be indicated	

IO core duplication	

w  IO core plays simple but important roles
n  Implemented by hardware or a small processor
n  Simple crash fault assumed

l  Fixed duplex configuration

　	

2015/1/26 IFIP WG 10.4 8

NoC Platform

IO core	

IO core	
D/A,
level
conv.

Sensor
inputs	

A/D,
level
conv.

Actuator
outputs	

Data sent to both IO cores at every
control cycle	

Data
decoder …

…

First data with correct check-
sum are used	

Data
generator

w How and for what does it work better?	
n  Conventional methods	

l  Lock-step pair	
l  TMR with a spare

	

	

 	

Question	

2015/1/26 IFIP WG 10.4 9

w How and for what does it work better?	
n  Conventional methods	

l  Lock-step pair	
l  TMR with a spare

	

	

 	

Question	

2015/1/26 IFIP WG 10.4 10

comp.	 OK/NG	

out	

in	 comp.	

in	

comp.	

out	
Lock-step element	

Lock-step pair	

No support software needed	

w How and for what does it work better?	
n  Conventional methods	

l  Lock-step pair	
l  TMR with a spare

	

	

 	

Question	

2015/1/26 IFIP WG 10.4 11

voter	in	 out	

TMR with a spare	

Reconfiguration with synchronization needed	

Question	

2015/1/26 IFIP WG 10.4 12

w How and for what does it work better?	
n  Conventional methods	

l  Lock-step pair	
l  TMR with a spare

w Analytical evaluation on abstracted models
n  Parameters used in this report

l  #core：8　（Failure rate λ＝10000 fit）	

l  #task：10　（Execution time: T）	

l  Task graph concurrency: 2-4
l  Control cycle time : CT
 (Down unless completed within CT)　	

Our method	

w Task graph 1	

n  Concurrency: 3	

2015/1/26 IFIP WG 10.4 13

T3 T4T2

T0 T1

T6 T7T5

T9T8

P0

P1

P2

P3

P4

P5

P6

P7

T0

T0

T1

T1

T2

T2

T3

T3

T4

T4

T5

T5

T6

T6

T7

T7

T8

T8

T9

T9

5T

(b)(a)

Time slot for temporary TMR	

6λ
S0

8λ 7λ 5λ 4λ
S1 S2 S3 S4 S5

3λ 2λ S
failureS6

6λ
S0

8λ 7λ 5λ 4λ
S1 S2 S3 S4

S
failure

6λ
S0

8λ 7λ 5λ 4λ
S1 S2 S3 S4 S5

3λ S
failure

6λ
S0

8λ 7λ
S1 S2

S
failure

Calculation of reliability	

w  For given CT	
n  Condition of “down” is decided	

l  Eg. if CT=6T, the system goes down when 5 cores go faulty	

w  Markov Chains	

n  5T≤CT<6T	

n  6T≤CT<8T	

n  8T≤CT<11T	

	

n  CT≥11T	

2015/1/26 IFIP WG 10.4 14

Lock-step pairs	

w Type 1

n  After one fault occurs, both LS1 and LS2 are
still used for the assigned tasks

w Type 2
n  After one fault occurs, only fault-free LS is

used for the whole tasks	

15	

LS1	 LS2	

2015/1/26 IFIP WG 10.4

Calculation of reliability	

w Markov chain for Type1
n  CT≥5T

16	

4λ
S0

8λ λ

2λ

4λ

2λ

4λ

2λ

λ

4λ

4λ

Markov chain

S1 S20 S3 S4

S21

S
failure

2015/1/26 IFIP WG 10.4

Calculation of reliability	

w Markov chain for Type2
n  5T≤CT<10T

n  CT≥10T

17	

S00 S01
8λ

S1*
4λ

S2*
λ 2λ

S00
8λ

5T ≤ CS < 10T

S
down

10T ≤ CS
S

down

2λS00 S01
8λ

S1*
4λ

S2*
λ 2λ

S00
8λ

5T ≤ CS < 10T

S
down

10T ≤ CS
S

down

2λ

2015/1/26 IFIP WG 10.4

w Type 1

n  After one fault occurs, both TMR_S1 and
TMR_S2 are still used for the assigned tasks

w Type 2
n  After one fault occurs, only fault-free TMR_S is

used for the whole tasks	

TMR with a spare	

18	

TMR_S1	 TMR_S2	

2015/1/26 IFIP WG 10.4

Calculation of reliability	

w Markov chain for Type1
n  CT≥5T
	

19	

4λ
S0

8λ 3λ

4λ

2λ

6λ

3λ

2λ

4λ

Markov chain

S1 S20 S3 S4

S21

S
failure

2015/1/26 IFIP WG 10.4

Calculation of reliability	

w Markov chain for Type2
n  5T≤CT<10T

n  CT≥10T
	

20	

S00 S01 S1* S2*
3λ8λ 4λ 2λ

S00
8λ S

down

5T ≤ CS < 10T

10T ≤ CS
S

down

S00 S01 S1* S2*
3λ8λ 4λ 2λ

S00
8λ S

down

5T ≤ CS < 10T

10T ≤ CS
S

down

2015/1/26 IFIP WG 10.4

Comparison of average failure rates	

w Task graph 1

21

T3 T4T2

T0 T1

T6 T7T5

T9T8

2015/1/26 IFIP WG 10.4

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

4T 5T 6T 7T 8T 9T 10T 11T 12T

Av
er

ag
e

fa
ilu

re
 ra

te
 [F

IT
]

Cycle Time (CS)

lock-step type1
lock-step type2

TMR-spare type1
TMR-spare type2

DTTR

Control Cycle Time (CT)	

Our method

Diag. & Reconf. components 	

w Proposed： λD
n  I/O core

w LS2： λL
n  Comparators
n  I/O

w TMR_S： λT
n  Voters, Reconfiguration circuits
n  I/O

w λ >> λD > λT > λL
22 2015/1/26 IFIP WG 10.4

Diag. & Reconf. components 	

w  For various failure rates of Diag. & Reconf.
components (Task graph1, CT=8T) 	

23

 0.1

 1

 10

 100

 1000

 10000

 100000

0.01 0.1 1 10 100 1000 10000

Av
er

ag
e

fa
ilu

re
 ra

te
 [F

IT
]

Failure rate of Diag.&Reconf. components [FIT]

lock-step type1
lock-step type2

TMR-spare type1
TMR-spare type2

DTTR

2015/1/26 IFIP WG 10.4

Our method

Summary	

w  This analysis suggests	

n  For large CT	

l  Our method achieves highest reliability 	
n  With high performance cores	

l  Task execution times become smaller	
l  CT becomes larger relatively	

w Our method has unique characteristics

2015/1/26 IFIP WG 10.4 24

Performance contributes improvement of reliability	

