

Stochastic Modelling of Cyber Attacks in Industrial Control Systems

Dr Peter Popov

In collaboration with Robin Bloomfield, Aleksandr Netkachov and Kizito Salako Centre for Software Reliability City University London

> p.t.popov@city.ac.uk College Building, City University London Northampton Square, EC1V 0HB Tel: +44 207 040 8963 (direct) +44 207 040 8420 (sec. CSR)

- Risk analysis of complex industrial systems
 - Complexity makes the analysis very difficult
 - Identifying hazards and all "interesting events" is very difficult
 - Stochastic models are a way of addressing this difficulty
- Preliminary Interdependency Analysis
 - Method, Modelling dependencies, Parameterisation
- Tool support
- Modelling complex industrial control systems
 - NORDIC32 + a model of protection and control based on IEC 61850
 - Model of an Adversary
 - Simulation engine
 - Results
- Conclusions and Future work

Projects relevant to work

Sponsored by:

- EU: SESAMO (2012-2015) (Security and Safety Modelling)
- EU: AFTER (2011-2014) (A Framework for electrical power systems vulnerability identification, defence and restoration)

A new grant has just been announced:

UK EPSRC Research Institute in Trustworthy Industrial Control Systems,
"Communicating and evaluating cyber risk and dependencies" (2014 - 2017)

Based on:

- EU: IRRIIS (2006-2009) (Integrated Risk Reduction of Information-Based Infrastructure Systems)
- PIA:FARA (2009 2010) (Probabilistic Interdependency Analysis: framework, data analysis and on-line risk assessment), funded by the UK Technology Strategy Board (TSB).

CSR Building confidence in a computerised world www.csr.city.ac.uk

Critical Infrastructure Interdependencies

- A key issue for achieving CI resilience and CI protection
 - risk of CI disturbances propagating across dependencies' links
- A complex phenomena, yet not well understood

	Information infrastructure dependencies Cascading effects of the damage sustained by Northgate Information Solutions							
Healt Finan	h: ce:	five hospitals lost access to patient records and admission/discharge systems and reverted to manual systems for a week £1.4 billion payroll scheme lost due to explosion — recovered in time						

ilding confidence in a computerised world www.csr.city.ac.uk

IFIP WG 10.4 workshop "Smart Grids: Security and Dependability", 26-29 June, 2014, Amicalola Falls Lodge, Dawsonville, Georgia, USA

PIA - Interdependency Analysis

- PIA is an approach (method) to interdependency analysis which consists of two steps
 - Preliminary Interdependency Analysis (Pre-IA) – HAZOP like analysis of interdependency *discovery*
 - Probabilistic Interdependency Analysis (Pro-IA) – quantitative model of interacting CIs, each represented as a collection of services, which in turn may have their own network and components:
 - Typically very large number of components (*hardly amenable to analytic solutions)*,
 - parameterization becomes problematic)
 - Probabilistic behaviour (rates/distributions of Time-To-Failure and Time-To-Repair)
 - Engineering (typically deterministic) models (e.g. various flows models) are needed for high fidelity studies.

CSR Building confidence in a computerised world www.csr.city.ac.uk

CITY UNIVERSITY

LONDON

An overview of the PIA method

CSR Building confidence in a computerised world www.csr.city.ac.uk

CITY UNIVERSITY LONDON Preliminary Interdependency Analysis (Pre-IA)

- 'Preliminary' because one should start by establishing basic understanding
- Service oriented, systematic elaboration of model components
 - "Quick and easy wins" rather than expensive and time-consuming detailed modelling and analysis
 - HAZOP style Identification of dependencies of assets/components/resources within and across organizations/departments

Basis for more detailed models

- Examples
 - Rome telecommunications incident (developed in IRRIIS)

Probabilistic PIA (Pro-IA)

- We deal with both uncertainty in the real world (aleatory) and in our knowledge of it (epistemic)
 - behaviours, structures (especially for Information infrastructures)
- The measures of interest are probabilistic
 - overall aggregated *risks* (e.g. size of cascades vs. frequency)
 - probability of specific events (e.g. service loss, failure scenarios, "weakest link")
- Pro-IA allows for modelling approximations and efficiencies
 - consequence and environment models, infrastructure models
 - explore cascade mechanisms
 - can explore many thousands situations (very large state space)
 - can search for interesting cases, link to trials/demos
- important role to *complement* deterministic, qualitative, trails and analytic approaches

CSR Building confidence in a computerised world www.csr.city.ac.uk

Pro-IA models

- We used SANs (stochastic activity networks) and Möbius Modelling Tool (by the performability group at the University of Illinois at Urbana Champaign, USA) to define parameterised continuous time semi-Markov models
- Finite state atomic components that "interact" with each other to make *impairment* and failure "contagious":
 - Each component is modelled as a state-machine (a semi-Markov process)
 - rates (distributions) of transition between states are functions of the states of the 'neighbour' components ("model of stress").
- Embedded deterministic sub-models that can relate the "dynamics" of some subsets of the components on the state of other subset of components, e.g.:
 - DC/AC approximate power flow model for power flow components
 - telecommunication service model.
- Components coupled via geographic location.
 - Spatial dependencies are important
 - BUT not the only ones worth studying! (design faults, viruses are not spatial)

CSR Building confidence in a computerised world www.csr.city.ac.uk

PIA approach to modelling (inter)dependencies

Stochastic associations - sources of dependency and cascades

IFIP WG 10.4 workshop "Smart Grids: Security and Dependability", 26-29 June, 2014, Amicalola Falls Lodge, Dawsonville, Georgia, USA

10

The Rome Scenario

- Service layer 5 services:
 - Power Grid: Power Transmission and Power Distribution
 - Telecommunications: Fibre-optics network, fixed lines telephony, GSM
- Physical layer;
 - 830 modelled physical elements nodes and links (high-voltage cabins, trunks, fibre cables, transmitters, gateways)
- Dependencies
 - deterministic based on functional dependencies (telecommunications need power, power components controlled remotely via telecommunication channels)
 - stochastic associations spatial proximity and cross-CI functional dependencies;
 - Non-probabilistic models (causality, flow models which may lead to overloading and tripping)
- Parameter values;
 - Probabilistic models: Failure rates, Repair rates
 - Deterministic: flows, capacity (of lines, batteries), power load, voltage levels, line resistance (ETHZ);

CSR Building confidence in a computerised world www.csr.city.ac.uk

PIA:FARA Toolkit Prototype

• The toolkit consists of:

- PIA Designer an interactive tool to allow a modeller to 'design' an interdependency study.
 - Supported by Adelard's ASCE visual editing tool (designed to support documenting safety-cases and customised for the needs of PIA)
- PIA Run-time support execution environment based on the Möbius tool (and in particular its SAN formalism) with very *extensive customisation*
- PIA Designer a 2-layer approach:
 - *Intra*-services model networks behind the individual services are explicitly modelled (as SANs with dependencies between the modelled elements)
 - Inter-services model explicitly models (inter)dependencies between the services that belong to different Intra-service models;
 - Coupling points path for interdependencies to propagate between services;
 - Deterministic models added via *plug-ins* to the system at run-time (DLLs and initialisation files, e.g. XML)
 - Exporting the model for 'execution' on a run-time environment such as Möbius's SAN execution engine.
 - Visualisation of the probabilistic model simulation traces (using the Möbius built-in provisions or custom built utilities)

CSR Building confidence in a computerised world www.csr.city.ac.uk

PIA:FARA Toolkit

IFIP WG 10.4 workshop "Smart Grids: Security and Dependability", 26-29 June, 2014, Amicalola Falls Lodge, Dawsonville, Georgia, USA

13

_

Möbius

Rome

Initializer

Generic_Rewards

Close

Generic_Simulation_Solver

Generic_Study

Service

Rome

Results

Cascade size

Results (2)

IFIP WG 10.4 workshop "Smart Grids: Security and Dependability", 26-29 June, 2014, Amicalola Falls Lodge, Dawsonville, Georgia, USA

CSR Building confidence in a computerised world www.csr.city.ac.uk

15

AFTER / SASAMO case study

NORDIC 32

- Power transmission network a reference network used widely in research
 - 32 sub-stations (more details are provided later)
- ICT network
 - SCADA system modelled at high level of abstraction
 - Control network in substations is compliant with IEC 61850 (an international standard defining an architecture and communication stack for substation protection and control)
- Model of cyber attacks
 - Model of an Adversary adapted to the specific context
- The PIA principles applied:
 - Stochastic dependence between the modelling elements
 - Hybrid models (i.e. stochastic and deterministic, e.g. Power flows)
 - Rewards specific to the context, e.g. the power loss due to accidental failures or malicious activities, probability of large cascades.

CSR Building confidence in a computerised world www.csr.city.ac.uk

NORDIC 32

CSR Building confidence in a computerised world www.csr.city.ac.uk

ICT system

IFIP WG 10.4 workshop "Smart Grids: Security and Dependability", 26-29 June, 2014, Amicalola Falls Lodge, Dawsonville, Georgia, USA

18

Sub-station model

CSR Building confidence in a computerised world www.csr.city.ac.uk

CITY UNIVERSITY Risks in Industrial Control Systems

- Industrial Control Systems (ICS) demand different prioritisation of concerns (in comparison with enterprise systems):
 - Real-time essential
 - High availability paramount
 - Integrity important
 - Privacy typically not a concern
 - but seems important in power distribution systems
- Failures of Industrial systems have directly observable and measurable impact
 - In the enterprise systems the consequences of failures are less observable and the losses can easily be exaggerated
- Our work is on risk assessment when an objective utility/loss function can be defined

Model of Adversary

Models an attack on a firewall of a substation and the actions taken by an Adversary in case of a successful attack, which is **switching off** a **single power element** via its respective bay:

- a generator, or
- a load, or
- a line

computerised world

www.csr.city.ac.uk

A set of simulation experiments (studies) were completed to assess the risk of cyber attacks on the modelled power system

- We compared a *base-line* case with *system under attack* cases
 - Under the base-line case *no attacks* take place (the Adversary is *inactive*)
 - Under the system under attack case the Adversary is active
- The model was *parameterised* as follows:
 - Transitions of the state machines representing the power and ICT elements were parameterised using *data provided by experts*
 - For attacks we varied the rate of attacks (*sensitivity* analysis):
 - once a year, once a month, once a week and once a day.
 - The *chances of success* by the adversary were also varied do that we can distinguish between poor and good *security policies*
 - Repairs after successful attacks is achieved by either:
 - the standard control (for lines repair is almost instantaneously) or
 - dedicated measures additional: for generators and loads we modelled the repair time as an *exponential distribution* with an average of 3 hours (a typical figure for power systems).

We varied the preferences of the Adversary

- A non-intelligent attacker indifferent between targets (i.e. which substation to attack and which bay in a sub-station to switch off)
 - Different sub-stations are not equally important some connect large generators/loads while some other – small generators/loads
- An *intelligent* attacker greater generators and loads make a substation more attractive for the Adversary.
- For illustration of the difference we chose:
 - 5 largest generators are the only targets for the intelligent Adversary
 - 5 largest loads are the only targets for the intelligent Adversary which represent *positive correlation* between the importance index and the probability for a random target to be attacked by the Adversary.

The Intelligent Adversary Profile

Generators								
		Generator Capacity						
Substation ID	Attack Probability attack on a generator	[MW]						
4072	0.50	4500						
4051	0.25	1400						
4047	0.10	1200						
4063	0.10	1200						
4011	0.05	1000						

Loads								
Substation ID	ID Attack Probability attack on a load Load [MV							
4072	0.50	2000						
4043	0.25	900						
4051	0.10	800						
1044	0.10	800						
4046	0.05	700						

CSR Building confidence in a computerised world www.csr.city.ac.uk

Measures of interest (rewards)

The measures used in the studies are related to the supplied power. The studies span over a period of 10 years (an arbitrary choice).

- some power is lost due to accidental failures
- power may also be lost due to successful attacks

The chosen measures of interest (rewards) were computed for:

- the *base-line* case and
- the **system under attack** cases

Measures 1: Supplied Power

The supplied power, $P_i(t)$, is a *random variable*.

C:\Peter	\FP7\SESAM		DIC32\A	lexVN-p	ia-nordic3	2-dc75 🕒		×
<u>File</u> <u>E</u> dit	<u>S</u> election	Find <u>V</u> iew	<u>G</u> oto	<u>T</u> ools	<u>P</u> roject	Prefere <u>n</u> ces	<u>H</u> elp	
engir	trace trac	e trace tr	ace tr		reac adı	mi game	logir us	era
343	0.080769	4898731098	10940				111n	a 10
344	0.082500	64171698095	10940)				
345	0.082500	64171698095	10240	4046				
346	0.082500	64171698095	9440	4046,4	051			
347	0.082500	64171698095	8940	4046,4	051,406	1		
348	0.082500	64171698095	8350	4046,4	051,406	1,4063		
349	0.082500	64171698095	8350	4046,4	051,406	1,4063		
350	0.082500	64171698095	8350	4046,4	051,406	1,4063		
Line 343, Co	olumn 26				Tab Siz	:e: 4	Plain Text	i

We looked at two statistics:

- The average supplied power over the chosen interval of 10 years, E[P_i(t)]
- The standard deviation, StD(P_i(t)) is a measure of spread of the power delivered to consumers. Greater value indicate greater variability of power supply, i.e. more unstable power supply.

CSR Building confidence in a computerised world www.csr.city.ac.uk

For each run we define a score function (an indicator) for each of the simulation runs as follows:

$$\omega_i \bigotimes = \begin{cases} 1, if \ P_i \bigotimes X \ for \ 0 \le t \le 10 \ years \\ 0, elsewhere \end{cases}$$

Then for a number of runs, N_r , we express the probability of large outage as: N_r

$$P(\mathbf{X}) = \frac{1}{N_r} \omega_i(X)$$

We set X as percentage of the nominal power, 10,940 MW, and compute P(X) for X = 10, 20, 30, ... 80, 90.

CSR Building confidence in a computerised world www.csr.city.ac.uk

- ~500 simulation runs of 10 years of operation
 - The number of events per run is in the range of 8000 32,000 including the attacks.
- Measure 1:
 - Over the population of 500 runs E[P_i(t)] and StD(P_i(t)) are themselves random variable. We plot:
 - The distribution of E[P_i(t)]
 - The distribution of the standard deviation, $StD(P_i(t))$
- Measure 2:
 - Over the population of 500 runs we computed the probability that in a *randomly chosen run* the supplied power, P_i(t), drops at least once to less X% of the nominal power, 10,940 MW.
 - This probability tells us the likelihood of a "large outage" to occur in the modelled system.

CSR Building confidence in a computerised world www.csr.city.ac.uk

CITY UNIVERSITY

Measure 1: Attacks only case

- The effect of frequency of the attacks on the power supply is shown below.
 - Power loss increases with the frequency of the attacks
 - Standard deviation increases, too.

Measure 1: Failures and attacks

- The combined effect of accidental failures and the frequency of attacks on the power supply is shown below.
 - Power loss increases
 - Standard deviation increases, too

CSR Building confidence in a computerised world www.csr.city.ac.uk

Probability that the *power generation drops to X% of the nominal level* of 10,940 MW *at least once* in 10 years of operation.

X[%]	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
no-attacks	0	0	0	0	0	0.466	0.99	1	1	1
daily-attacks.major (AF)	0	0	0	0.05	0.15	0.992	1	1	1	1
daily-attacks.major (NAF)	0	0	0	0	0	0	0.002	0.894	1	1
monthly-attacks (NAF)	0	0	0	0	0	0	0	0	0.808	1
weekly-attacks (NAF)	0	0	0	0	0	0	0	0.004	0.998	1
yearly-attacks (NAF)	0	0	0	0	0	0	0	0	0.114	1

major - attacks on one of the 5 larger generators or one of the larger loads.

AF - accidental failures

NAF - no accidental failure

CSR Building confidence in a computerised world www.csr.city.ac.uk

- Extending the model of Adversary
 - More sophisticated scenarios are an obvious direction
 - attacking *multiple* targets by a single Adversary,
 - attacks that create *hazards*, e.g. altering the threshold of a protection device, which will not manifest itself immediately, but may cause large outage later
 - A combination of cyber and physical attacks
 - Orchestrated (SWARM) attacks
- Looking into using simulation to help with quantification in applying fashionable theories in cyber security research

– e.g. Nash equilibrium

- Given the great difficulty to parameterise Adversary models, *sensitivity* analysis for a plausible range of model parameters might be useful. This possibility was already demonstrated with the frequency of the attacks.
- The effectiveness of *defences against cyber attacks* in ICS can be studied, in case these can be varied and a decision is need which combination to apply. Among these defences are:
 - Frequency of repair
 - Use of sophisticated designs (e.g. using design diversity).

CSR Building confidence in a computerised world www.csr.city.ac.uk

Conclusions

- We have built capability of quantifying the risk in complex ICS.
 - The methodology for interdependency analysis was adapted and tried on a nontrivial power system.
 - The impact of cyber security on industrial systems requires detailed hybrid models. In our view the system model must include:
 - a model of the Adversary,
 - a model of the ICS (e.g. Protection, control, etc.) and
 - a model of the controlled system itself (to evaluate more realistically the impact).
 - Tool support was developed (continuous improvements are under way)
- Initial observations:
 - Some initial indications suggest that not only naive attacks, but also attacks by an *intelligent Adversary* may have a *limited impact* on the ICS.
 - Measures of interest are important risk perception varies with stakeholders.
 - "Black swan" events deserve particular attention
- Open issues related to methodology
 - how to do complex systems research
 - Issues of research methodology, testbeds, scaling, realism, realistic examples.
 - · lack of general theories.

CSR Building confidence in a computerised world www.csr.city.ac.uk

Thank you!

