
Model-based Intrusion Detection
System (IDS) for Smart Meters

Karthik Pattabiraman and Farid Tabrizi
Dependable Systems Lab

University of British Columbia (UBC)

University of British Columbia (UBC) 1

My Research

• Building fault-tolerant and secure software systems

• Application-level fault tolerance

– Software resilience techniques *DSN’14+*DSN’13+*DSN’12+

– Web applications’ reliability *ICSE’14+*ICSE’14+*ESEM’13+

• This talk

– Smart meter security *HASE’14+*WRAITS’12+

2

Smart Meter Security

• Smart meter Attacks

– No need for physical presence

– Hard to detect by inspection or testing

– Attacks can be large-scale

3

Analog Meter Smart Meter

University of British Columbia (UBC)

Security is a concern

4

Security is a concern

University of British Columbia (UBC) 5

Goal

• Goal: Make smart meters secure

– Build a host-based intrusion detection system (IDS)

– Detect attacks early and stop them

• Why is this a new challenge?

– Smart meters have unique constraints that make them
different from other computing devices

– Existing techniques do not offer comprehensive
protection

University of British Columbia (UBC) 6

Outline

• Motivation and Goal

• Prior work and constraints

• Our approach

• Evaluation

• Formal modeling

• Conclusion

University of British Columbia (UBC) 7

Prior Work on Smart Meter Security

• Network-based IDS [Barbosa-10][Berthier-11]

• Remote Attestation [LeMay-09][OMAP-11]

University of British Columbia (UBC) 8

Looks Legit!

Why (bother with) Host-based IDS ?

• Defense in depth

– Complement network-based IDS: False negatives

– Can detect both physical and network attacks

• Remote attestation techniques do not cover
attacks that change dynamic execution of the
meter at runtime, e.g., control-flow hijacking

University of British Columbia (UBC) 9

Constraints of smart meters

• Performance
– Low-cost embedded devices; memory constrained

• No false positives
– False-positive rate of 1% => 10,000 FPs in 1 million meters

• Software modification
– Software has real-time constraints; no modifications

• Low cost
– Rules out special cryptographic hardware or other additions

• Coverage of unknown attacks
– Attacks are rapidly being discovered; zero-day attacks

University of British Columbia (UBC) 10

Prior Work on Host-based IDS

System Perfor
mance

No False
Positives

No Software
Modification

Low
Cost

Unknow
n attacks

Dyck X X

NDPDA X X X

HMM/NN/S
VM

X X X X

Statistical
Techniques

X X X X

No existing host-based IDS can satisfy all five
constraints: Need for new IDS

University of British Columbia (UBC) 11

Outline

• Motivation and Goal

• Prior work and constraints

• Our approach

• Evaluation

• Formal modeling

• Conclusion

University of British Columbia (UBC) 12

Threat model

• Adversary: wants to change the execution
path of the software (in subtle ways)

Read
Consumption

data

Send
consumption
data to the

server

Read
consumption

data

Multiply
consumption

by 0.01

Write
modified data

to memory

University of British Columbia (UBC) 13

Approach

• Build a model of the meter software

– Meters are designed to do specific tasks

step1

step2

step3

step4

Syscall1

Syscall2

Abstract Model Concrete Model

14 University of British Columbia (UBC)

Approach

15

step1

step2

step3

step4

Syscall1

Syscall2

Abstract Model Concrete Model

University of British Columbia (UBC)

Abstract Model

• Build an abstract model based on standard
specifications of smart meter functionality

Reading data
from sensors

Calculate
consumption

Pass data to be
sent to server

16University of British Columbia (UBC)

Abstract Model

4-R
ead

in
g d

ata fro
m

sen

so
rs

5
-C

alcu
late

co
n

su
m

p
tio

n

2-C
h

eck fo
r in

p
u

t
co

m
m

an
d

s

6-P
ass d

ata to
 b

e
sen

t to
 server

3-P
ro

cess
co

m
m

an
d

s

7-R
eceive

co
n

su
m

p
tio

n
 d

ata
fro

m
 co

n
tro

ller

8-C
h

eck fo
r

A
vailab

ility o
f th

e
server

1
0-R

ead
 d

ata fro
m

p

h
ysical sto

rage

9-Save d
ata to

 th
e

p
h

ysical sto
rage

1
2-C

h
eck fo

r
in

co
m

in
g co

m
m

an
d

s
fro

m
 th

e server

Controller Processes

1
-In

itialization

Su
b

m
it

d
ata to

th

e
server

?

A
vailab

l
e?

11-Su
b

m
it all d

ata to

th
e server

1
3-Sen

d
 co

m
m

an
d

s
to

 th
e co

n
tro

ller

Communication Processes

17University of British Columbia (UBC)

Approach

18

step1

step2

step3

step4

Syscall1

Syscall2

Abstract Model Concrete Model

University of British Columbia (UBC)

Building the concrete model

• Use a tagging system

• Features
– Ease of use

– Flexibility

// <network, serial, b2>
SerialHandler()
{
…
}

University of British Columbia (UBC) 19

segMeterHandler

collectChannels

collectChannelTransduced

collectChannelRMSpowerOutputHandler

sendMessage

setup segMeterInitialize serialInitialize

serialHandler() parseCommand

seg_commands.pars relayCommand

1-Initialize

2-Check input
commands

3-Process commands

4-Read
sensors

5-Calculate consumption6-Pass results to be
Submitted to server

Concrete Model

20 University of British Columbia (UBC)

Approach

21

step1

step2

step3

step4

Syscall1

Syscall2

Abstract Model Concrete Model

University of British Columbia (UBC)

IDS Generation: Attack Database

• Build the IDS based on system calls

7-Receive
consumption

data from
controller

8-Check for
Availability of

the server

10-Read data
from physical

storage

9-Save data to
the physical

storage

Submit
data to

the
server?

Availa
ble?

Attack
Database

University of British Columbia (UBC) 22

Example Attack

• Communication interface attack

Save data in
the buffer

sendMessage():

Pass data to be sent to the server

ser2net
serial_handler():

Receiver consumption data from the
controller

6-Pass data to be
sent to server

7-Receive
consumption data

from controller

Data
spoofing

23

System Call Selection: Algorithm

• Generate the set of all system calls
of the meter

• Traverse the attack database
• Map the attacks to functionalities of

the concrete model
• Map system calls to functionalities
• In the end: system calls associated

with the attacks are mapped to the
concrete model blocks

• Pick system calls that cover the most
blocks until all blocks are covered

• Generate the state machine of the
system calls based on the graph

1- Data
spoofing

.

.

.

sendMessage()

(send, recv, connect)

read

Send
recv
conn

University of British Columbia (UBC) 24

Model-Based IDS: Implementation

• Compile time: Extract state machine of sys calls

– Input: Annotated code

– Output: state machine

• Run time: Check sys call sequences

– Logger: attaches strace to the process being
monitored and logs system call traces

– Checker: Runs every T second, parses the generated
system calls, compares the logged trace with model

University of British Columbia (UBC) 25

Outline

• Motivation and Goal

• Prior work and constraints

• Our approach

• Evaluation

• Formal modeling

• Conclusion

University of British Columbia (UBC) 26

Experimental Setup

• SEGMeter
– Arduino board

• ATMEGA 32x series
• Sensors

– Gateway board
• Broadcom BCM 3302

240MHz
• 16 MB RAM
• OpenWRT Linux

– IDS runs on Gateway board

University of British Columbia (UBC) 27

Results: Performance

• Performance
– Tme taken to check the syscall trace / time taken

to execute the meter software - produce the trace

Memory available 12 MB 9 MB 6 MB

Full-trace IDS 165.2% 214.6% 315.1%

Our Model-based IDS 4.0% 4.0% 4.0%

Full-trace IDS cannot keep up with the software, while
our model-based IDS incurs low overheads

University of British Columbia (UBC) 28

Results: Coverage (Known Attacks)

• Detection (Known attacks)

– Implemented four different attacks *WRAITS’12+

• Communication interface attack

• Physical memory attack

• Buffer filling attack

• Data omission attack

– Our Model-Based IDS detects all four attacks

• If undetected, the attacks lead to severe consequences

University of British Columbia (UBC) 29

Results: Coverage (Unknown Attacks)

• Detection (Unknown attacks)
– Code injection

• Select a procedure to inject in the smart meter

• Mutate the procedure by copying and pasting 1-8 lines of code
from some other part of it (harder to detect)

– Protection provided against most unknown attacks at a
fraction of the cost of full-trace based techniques

Component Random (%) Popular system
calls (%)

Full-trace
(%)

Model-based

Minimum Average Maximum

Server communication 32 36 92 59 62 63

Storage and retrieval 14 44 84 73 74 78

Serial communication 42 28 88 67 72 74

Averagel 29.3 36.0 88.0 67.4 69.6 71.7

30University of British Columbia (UBC)

Results: Monitoring Latency

• Monitoring latency

– Smaller T: Faster
detection, higher
performance
overhead

– We pick T= 10s

• Low performance
overhead: 4%

• Full trace can’t keep
up even with T=60s

University of British Columbia (UBC) 31

T = 10 s

Outline

• Motivation and Goal

• Prior work and constraints

• Our approach

• Evaluation

• Formal modeling

University of British Columbia (UBC) 32

Towards formal modeling
 Manual checking of IDS

 Inaccuracy

 Effort

 Formal Modeling

 Formal definition of the flaws

 Formal definition of the model

 Goals: Speed and accuracy

University of British Columbia (UBC) 33

Formal Modeling: Approach

• We model the operations of the smart meter
– Low level (code level)

• What do we do with the model?
– Define invariants:

• Is it possible to change the consumption data?
• Is it possible that data not be stored?
• Is it possible to skip consumption calculation?

• Test the model against the invariants
– Find the flaws  provide potential solutions

University of British Columbia (UBC) 34

Formal Modeling Approach - 1

• We model the operations of the smart meter

– Low level (code level)

University of British Columbia (UBC) 35

function process_seg_response(response)

local win = true
local command = nil

…
if (response:sub(1, 7) == "(site= ") then

…
if (response:sub(1, 6) == "(node ") then

…
return win

Our input is the code

- Use the
variables of the
code as input

- Rewrite the
statements

module process_resp(response, result)
{

input response: string;
output result: string;
if (…)

result = time + consumption;
….

}

Formal Modeling Approach - 2

• What do we do with the model?

– Define checks for different invariants

University of British Columbia (UBC) 36

module process_resp(response, result)
{

input response: string;
output result: string;
if (…)

result = time + consumption;
….

cond1: assert ~(result == nil)
cond2: assert (response  consumption > 0)
…

}

Will be checked
against all

possible inputs

Formal Modeling Approach - 3

• Test the IDS against the model and invariants

– Find the flaws  provide potential solutions

University of British Columbia (UBC) 37

Example:
response == “”  consumption = 0 (default value)

Attacker can make the string empty (“”) even without knowing the encoding scheme

Solution

Add a check for empty string and raise an alarm for it

Outline

• Motivation and Goal

• Prior work and constraints

• Our approach

• Evaluation

• Formal modeling

• Conclusion

University of British Columbia (UBC) 38

Conclusion

• Smart meters have special constraints that make
existing host-based IDSes impractical

• Our model-based IDS: practical for smart meters
– Low performance overhead
– Good detection coverage
– Low detection latency

• Formal modeling can help automate the analysis
of the software: provide strong guarantees

University of British Columbia (UBC) 39

Future Work and Discussion

• Extend to other SCADA systems (e.g.,
transportation systems, oil pipelines etc)

• Build a generic framework to reason about
trading-off security for performance

• Automated inference of concrete model
through static analysis without annotations

University of British Columbia (UBC) 40

