Model-based Intrusion Detection
System (IDS) for Smart Meters

Karthik Pattabiraman and Farid Tabrizi
Dependable Systems Lab
University of British Columbia (UBC)

University of British Columbia (UBC)

My Research

* Building fault-tolerant and secure software systems

* Application-level fault tolerance
— Software resilience techniques [DSN’14][DSN’13][DSN’12]
— Web applications’ reliability [ICSE’14][ICSE’14][ESEM’13]

* This talk
— Smart meter security [HASE'14][WRAITS’12]

Smart Meter Security

* Smart meter Attacks
— No need for physical presence
— Hard to detect by inspection or testing
— Attacks can be large-scale

Analog Meter Smart Meter

University of British Columbia (UBC)

Security Is a concern

Security Is a concern

6\6‘35 oS

¢
’(«0 § sﬂ‘c“tﬂx
* ,\—(5 o
4 \ 5 e 5@3“
“&G 556 e
" ato .
i o\ YO
 gee™® ‘6‘ [gesi?" A
~_ out™
o H
14 [
5‘“ o .09 FBI: Smart Meter Hacks Likely to Spread
i€ B
3
afﬂ\,\. . \’)\) 1
Rt
(¢ e . . . - .
S—g}ﬂﬂ"' \eﬂf’e& " ¥ - A series of hacks perpetrated against so-called “smart meter installations over the past several
- e G0 S . - . s 10
pee™’ e . s years may have cost a single U.S. electric utility hundreds of millions of dollars annually, the
G ,,?0\\" g\;\\lﬁ FBI said in a cyber intelligence bulletin obtained by KrebsOnSecurity. The law enforcement
0 (o= * agency said this is the first known report of criminals compromising the hi-tech meters, and
S ~ . ; ——)
Q oy T “‘\(that it expects this type of fraud to spread across the country as more ptilities deploy smart
mme«e o ,e‘"“:: ek(\\'\“‘efir; grid technology.
gt g2 © T
a0 R g AN e
cxat® Q\,\‘G\\\J et el - BUKEAL OF INVESTIGATION
o HON® Qd‘\"e (\«\"\?‘s " i e Smart meters are intended toc improve i
= A kel W ' . sy e . s
a(\v\O‘)‘ N\OV\’*N\ & W officiency, reliability, and allow the electric
. LN C(\\ W I R 27 My 2000
a® ! S utility to charge different rates for
5@

University of British Columbia (UBC)

Goal

* Goal: Make smart meters secure
— Build a host-based intrusion detection system (IDS)
— Detect attacks early and stop them

* Why is this a new challenge?

— Smart meters have unique constraints that make them
different from other computing devices

— Existing techniques do not offer comprehensive
protection

Outline

Motivation and Goal

Prior work and constraints
Our approach

Evaluation

Formal modeling

Conclusion

University of British Columbia (UBC)

Prior Work on Smart Meter Security

 Network-based IDS [Barbosa-10][Berthier-11]

University of British Columbia (UBC)

Why (bother with) Host-based IDS ?

* Defense in depth
— Complement network-based IDS: False negatives
— Can detect both physical and network attacks

 Remote attestation techniques do not cover
attacks that change dynamic execution of the
meter at runtime, e.g., control-flow hijacking

Constraints of smart meters

Performance
— Low-cost embedded devices; memory constrained

No false positives
— False-positive rate of 1% => 10,000 FPs in 1 million meters

Software modification

— Software has real-time constraints; no modifications

Low cost

— Rules out special cryptographic hardware or other additions

Coverage of unknown attacks
— Attacks are rapidly being discovered; zero-day attacks

Prior Work on Host-based IDS

System Perfor | No False | No Software | Low Unknow
mance | Positives | Modification | Cost n attacks

Dyck

NDPDA X X X
HMM/NN/S X X X X
VM

Statistical X X X X
Techniques

No existing host-based IDS can satisfy all five

constraints: Need for new IDS

University of British Columbia (UBC)

11

Outline

Motivation and Goal

Prior work and constraints
Our approach

Evaluation

Formal modeling

Conclusion

University of British Columbia (UBC)

12

Threat model

* Adversary: wants to change the execution
path of the software (in subtle ways)

Write Multiply Read
modified data consumption consumption
to memory by 0.01 data

S0 Read

consumption Consumption
datatothe P p

data
server

University of British Columbia (UBC) 13

Approach

Build a model of the meter software
— Meters are designed to do specific tasks

ste p4 »

L.J

Abstract Model Concrete Model

14 University of British Columbia (UBC)

Approach

Abstract Model

University of British Columbia (UBC)

Concrete Model

15

Abstract Model

* Build an abstract model based on standard
specifications of smart meter functionality

Reading data Calculate Pass data to be
from sensors consumption sent to server

Abstract Model

1-Initialization

2-Check for input 3-Process
commands commands
6-Pass data to be 5-Calculate 4-Reading data from
sent to server consumption sensors
7-Receive oot 8-Check for
consumptiondata the Availability of the
from controller o server

9-Save data to the
physical storage

Availabl
e?

10-Read data from
physical storage

\!

13-Send commands
to the controller

12-Checkfor
incoming commands
from the server

<

11-Submit all data to
the server

Controller Processes

Communication Processes

Approach

step4 »

LJ

Abstract Model

University of British Columbia (UBC)

Concrete Model

18

Building the concrete model

* Use a tagging system

// <network, serial, b2>
SerialHandler()

{

* Features
— Ease of use
— Flexibility

University of British Columbia (UBC)

19

Concrete Model

3-Process commands

seg_commands.pars relayCommand

:- 1-Initialize -I
I setup > segMeterlnitialize P seriallnitialize I
I I
| — 1

I 2-Check input |

| commands |

—> serialHandler() :

I —— .

I Submitted to server

I
I
I
I
L

sendMessage

1

powerOutputHandler

> parseCommand

|
|
|
: r v v
|
|

I 4-Read
| sensors

collectChannelTransduced

| v
segMeterHandler

collectChannelRMS

I
I
<—|——I> collectChannels
I

Approach

Abstract Model

University of British Columbia (UBC)

Concrete Model

21

IDS Generation: Attack Database

* Build the IDS based on system calls

7-Receive
consumption |/ datato
data from
controller

8-Check for
Availability of

server?

Attack
Database

10-Read data
from physical
storage

University of British Columbia (UBC) 22

Example Attack

e Communication interface attack

St

6-Pass data to be
sent to server

Pass data to be sent to the server

Save data in
the buffer

sendMessage():

7-Receive
consumption data
from controller

-

ser2net

controller

Receiver consumption data from the

C} serial_handler():

System Call Selection: Algorithm

Generate the set of all system calls ()
of the meter - Data
Traverse the attack database sendMessage() |— spoofing

Map the attacks to functionalities of
the concrete model

Map system calls to functionalities

In the end: system calls associated
with the attacks are mapped to the
concrete model blocks

Pick system calls that cover the most
blocks until all blocks are covered

Generate the state machine of the
system calls based on the graph

(send, recv, connect)

University of British Columbia (UBC) 24

Model-Based IDS: Implementation

 Compile time: Extract state machine of sys calls
— Input: Annotated code
— QOutput: state machine

* Run time: Check sys call sequences

— Logger: attaches strace to the process being
monitored and logs system call traces

— Checker: Runs every T second, parses the generated
system calls, compares the logged trace with model

Outline

Motivation and Goal

Prior work and constraints
Our approach

Evaluation

Formal modeling

Conclusion

University of British Columbia (UBC)

26

Experimental Setup

s

%\

* SEGMeter “

— Arduino board
* ATMEGA 32x series
* Sensors

— Gateway board

e Broadcom BCM 3302
240MHz

* 16 MB RAM
* OpenWRT Linux

— IDS runs on Gateway board

University of British Columbia (UBC) 27

Results: Performance

e Performance

— Tme taken to check the syscall trace / time taken
to execute the meter software - produce the trace

Full-trace IDS 165.2% 214.6% 315.1%

Our Model-based IDS 4.0% 4.0% 4.0%

Full-trace IDS cannot keep up with the software, while
our model-based IDS incurs low overheads

University of British Columbia (UBC) 28

Results: Coverage (Known Attacks)

e Detection (Known attacks)
— Implemented four different attacks [WRAITS 12]

 Communication interface attack
e Physical memory attack
 Buffer filling attack

* Data omission attack

— Our Model-Based IDS detects all four attacks

* If undetected, the attacks lead to severe consequences

Results: Coverage (Unknown Attacks)

* Detection (Unknown attacks)
— Code injection

* Select a procedure to inject in the smart meter

* Mutate the procedure by copying and pasting 1-8 lines of code
from some other part of it (harder to detect)

Component

Random (%)

Popular system
calls (%)

Full-trace

(%)

Server communication
Storage and retrieval
Serial communication

Averagel

32

14

42

29.3

36

44

28

36.0

92

84

88

88.0

University of British Columbia (UBC)

I Nodel-base d
Minimum Average Maximum

59

73

67

67.4

62

74

72

69.6

63

78

74

71.7

30

Results: Monitoring Latency

* Monitoring latency

— Smaller T: Faster
detection, higher
performance
overhead

— We pick T=10s

* Low performance
overhead: 4%

* Full trace can’t keep
up even with T=60s

Overhead (%

20

— 157

N

o

Outline

Motivation and Goal

Prior work and constraints
Our approach

Evaluation

Formal modeling

University of British Columbia (UBC)

32

Towards formal modeling

e Manual checking of IDS

e |[naccuracy
o Effort

e Formal Modeling
e Formal definition of the flaws
e Formal definition of the model

e Goals: Speed and accuracy

University of British Columbia (UBC)

33

Formal Modeling: Approach

 We model the operations of the smart meter
— Low level (code level)

* What do we do with the model?

— Define invariants:
* |s it possible to change the consumption data?
* |s it possible that data not be stored?
* |s it possible to skip consumption calculation?

* Test the model against the invariants
— Find the flaws =2 provide potential solutions

Formal Modeling Approach - 1

 We model the operations of the smart meter
— Low level (code level)

function process_seg response(response) module process_resp(response, result)
. U - Use the
local win = true input response: string;
Iocabarpmﬁﬁf i‘§| the code output ré@ﬁ@!ﬁ'r%? of the
o if(..) code as input
if (response:sub(1, 7) == "(site=") then result = tﬁréev\;ﬁeasumglon;
if (response:sub(1, 6) == "(node ") then } statements
return win

University of British Columbia (UBC) 35

Formal Modeling Approach - 2

* What do we do with the model?
— Define checks for different invariants

module process_resp(response, result)

{

input response: string;
output result: string;

if (...)

result = time + consumption;

Will be checked
against all

cond1: assert ~(result == nil)
cond2: assert (response = consumption > 0)

University of British columbia (UBT) 36

Formal Modeling Approach - 3

* Test the IDS against the model and invariants
— Find the flaws —> provide potential solutions

Example:
response == “” = consumption = 0 (default value)

Attacker can make the string empty (“”) even without knowing the encoding scheme

Solution

Add a check for empty string and raise an alarm for it

Outline

Motivation and Goal

Prior work and constraints
Our approach

Evaluation

Formal modeling

Conclusion

University of British Columbia (UBC)

38

Conclusion

Smart meters have special constraints that make
existing host-based IDSes impractical

Our model-based IDS: practical for smart meters
— Low performance overhead

— Good detection coverage

— Low detection latency

Formal modeling can help automate the analysis
of the software: provide strong guarantees

Future Work and Discussion

e Extend to other SCADA systems (e.g.,
transportation systems, oil pipelines etc)

* Build a generic framework to reason about
trading-off security for performance

e Automated inference of concrete model
through static analysis without annotations

