
EFFICIENT GEAR-SHIFTING FOR

A POWER-PROPORTIONAL DISTRIBUTED

DATA-PLACEMENT METHOD

2014/1/27
Hieu Hanh Le, Satoshi Hikida and Haruo Yokota

Tokyo Institute of Technology

 Commodity-based distributed file systems are
useful for efficient Big Data processing

 Hadoop Distributed File System (HDFS), Google File
System

 Support MapReduce framework

 Gain good scalability

 Utilize a large number of nodes to store huge amount of
data requested by data-intensive applications

 Also expand the power consumption of the storage system

 Power-aware file systems are increasingly moving
towards power-proportional design

1.1 Background

2014/1/27

2

1.2 Power-proportional Storage System

 System should consume energy in proportion to

amount of work performed [Barroso and Holzle, 2007]

 Set system’s operation to multiple gears containing

different number of data nodes

 Made possible by data placement methods

2014/1/27

3

High Gear

Node

2-1

Node

1-1

D2

Node

1-2

D3 D1

Node

2-2

D4

Low Gear

Node

2-1

Node

2-2

Node

1-2

Node

1-1

D2 D3 D1 D4

D1 D4
migration

 Rabbit [ACM SOCC 2010], Sierra[ACM EuroSys 2011]

 The primary of the dataset are stored entirely in the

group of Covering-set nodes which are always active

 The backups of the dataset are stored entirely in each

group of nonCovering-set nodes which can be inactive

2.1 Current Data Placement Methods

2014/1/27

4

Node

2-1

Node

2-2

Node

1-2

Node

1-1

P1 P2 B1 B2

Node

3-1

Node

3-2

B1 B2

P: Primary data

B: Backup data

Gear 1

Gear 2

Gear 3

Group Nodes

Group 1 Node 1-1, Node 1-2

Group 2 Node 2-1, Node 2-2

Group 3 Node 3-1, Node 3-2

 Efficient gear-shifting becomes vital in power-

proportional system

 Deal with write requests when operating in a low gear

 Apply Write-Offloading [ACM Trans. On Storage, 2008]

 The data that should be written to deactivate nodes are

temporally stored at activate nodes

 When the system shifts to a high gear, all the temporal data have

to be transferred to the reactivated nodes according to policy

 Reduce performance degradation when shifts to higher gear

 Still an open issue

2.2 Motivation

2014/1/27

5

 Propose Accordion

 A power-proportional data placement method with

efficient gear-shifting

 Approach

 Control the power consumption of the system by

dividing the nodes into separate groups

 Carefully design the data replication strategy to

provide efficient gear-shifting

 Location of the primary data becomes the key to reduce the

temporal data needed to be retransferred

3. Goal and Approach

2014/1/27

6

replicate replicate

 Primary data

 Evenly distribute primary
data to all of the nodes in
the systems

 Backup data

 Replicate the data from
outbound nodes to inbound
nodes step-by-step

 Finally, apply the chained
declustering policy at
Convering-set nodes

 Enhance reliability at the
lowest gear

4.1Data Replication Strategy in Accordion

2014/1/27

7

Node

1-1

Node

1-2

Node

2-2

Node

3-2

Node

3-1

Node

2-1

P1 P6 P5 P2 P3 P4

B5

B6

B2

B1

B1 B6

replicate replicate B4

B5

B6

B3

B2

B1

Chained

declustering

Write D={P1, P2, P3, P4, P5, P6}

Gear 1

Gear 2

Gear 3

 The amount of

retransferred data is

smaller than in other

methods

 The retransferred data

are the data that

should be written to

non-CoveringSet nodes

4.2 Accordion vs. Other Methods

2014/1/27

8

Node

1-1

Node

1-2

Node

2-2

Node

3-2

Node

3-1

Node

2-1

P1 P6 P5 P2 P3 P4

B1 B6 B5

B6

B2

B1

B4

B5

B6

B3

B2

B1

P1 P4

P3

P2

P6

P5

B1

B2

B3

B4

B5

B6

B4

B5

B6

B1

B2

B3

Accordion

Other methods

(Rabbit, Sierra)

B1

B2

B3

B4

B5

B6

4.3 Accordion in Multiple-Gear File System

2014/1/27

9

 The amount of retransferred data becomes smaller

when the system perform gear-shifting in a higher gear

 The number of inactive nodes is decreasing

Scale: ratio of the number of nodes

between two consecutive groups

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Gear 1 to
Gear 2

Gear 2 to
Gear 3

Gear 3 to
Gear 4

Gear 4 to
Gear 5

Rabbit or Sierra (G=5)

Accordion (G=5, scale=3)

Accordion (G=5, scale=2)

Accordion (G=5, scale=1)

 An imbalance in the amount of data does not

lead to a considerable problem

Current load balancing mechanisms only make use

of part of the capacity other than full of the

capacity

 The load can be well distributed to all the nodes

 The same amount of data are served by each node

 Highly take advantage of parallelism in serving the

request

4.4 The Skew in Data Distribution in Accordion

2014/1/27

10

 Deal with the mixture of primary and backup data

 Majorly only primary or backup data are accessed

 Accordion-with-Disk-Partition (Accordion-DP)

 Utilize partitioning technique to separate the data

 Improve the performance through reducing the seek

time on disks

4.5 Physical Data Placement on an Accordion Node

2014/1/27

11

Accordion

P

B
P

B
P B

B

B

B

P

Accordion-DP

B B B
B

B
B Disk partitioning

Long seek time Short seek time

P P
P P P P

 Develop a prototype of Accordion based on a
modified HDFS which is able to perform:

 Different data placement methods

 Load balancing

 Writing requests in a low gear based on Write-Offloading

 Extensive experiments

 Evaluate the effectiveness of load balancing

 Verify the effectiveness of Accordion on efficient gear-
shifting

 Evaluate the power-proportionality of Accordion under
different system configurations

5. Empirical Experiments

2014/1/27

12

5.1 Experiment Framework

2014/1/27

13

Node

Name ASUS Eeebox EB100

CPU TM8600 1.0GHz

Memory DRAM 4GB

NIC 1000Mb/s

OS Linux 3.0 64bit

Java JDK-1.7.0

Low power

nodes

Power consumption

measurement HIOKI

3334

 Evaluate the throughput performance

 Methods: Accordion, Accordion-DP, Rabbit

 Throughput of the workload of reading a dataset

 Experiment environment

5.2 Effect of Load Balancing

2014/1/27

14

Gears 3

Active nodes (Accordion, Accordion-DP) 2, 8, 20

Active nodes (Rabbit) 2, 7, 21

Files 420

File size 64 MB

HDFS version 0.20.2

Block size 32 MB

 0

 50

 100

 150

 200

 250

 0 5 10 15 20 25

Accordion-DP

Accordion

Rabbit

Gear 1

Gear 2

Gear 3
better

5.2.1 Effect of Load Balancing

2014/1/27

15

 Accordion-based methods gained better throughput, especially in
Gear 3 due to better distribution of serving time

 The effective of Disk-partitioning was verified as Accordion-DP
achieved better result than Accordion

[MB/s]

Average throughput

active nodes

Distribution of accessed time

5.3 Efficient Gear Shifting

2014/1/27

16

Node

1-1

Node

1-2

Node

2-2

Node

2-3

Node

2-3

Node

2-1

Gear 3

Node

1-1

Node

1-2

Node

2-2

Node

2-1

Node

1-1

Node

1-2

Node

2-2

Node

2-3

Node

2-3

Node

2-1

1. Write a part of dataset

(W1 files)

2. Write a part of dataset

(W2 files) with Write-

Offloading

Gear 2

Gear 3

3.1 Retransfer data

3.2 Read a whole dataset

(W1+W2 files)

 Gear shifting scenario

 Evaluate the performance when the system shifts to

a higher gear

 Execution time for retransferring data

 Effect of retransferring data to the performance

 Accordion-DP and Rabbit

 4 configurations with the change in the ratio of W1 and W2

5.3.1Experiment Method

2014/1/27

17

Configuration W1

(files)

W2

(files)

Without

Updated Data

420 0

Small 350 70

Medium 280 140

Large 210 210

0

50

100

150

200

250

300

350

400

450

Small Medium Largebetter

[s

]

5.3.2 Data Retransferred Process

2014/1/27

18

The size of retransferred data The execution time for

retransferring temporal data

 Accordion-DP significantly reduced the execution time
by up to 66%

 The data size of retransferred data in Accordion-DP
was always smaller than in Rabbit

66%

0

2000

4000

6000

8000

10000

12000

14000

16000

Small Medium Large

[MB]

better

Rabbit Accordion-DP

0

50

100

150

200

250

Without
Updated Data

Small Medium Large

5.3.3 Throughput of Reading Whole Dataset

2014/1/27

19

 Throughput was significantly degraded due to data

retransferred process by more than 60%

 Accordion-DP always gained better throughput by 30%

-60%

better
[MB/s]

Rabbit Accordion-DP

 Evaluate the effects of different configuration of

Accordion on the power-proportionality

 3 gears with 3 configurations

 The throughput of reading 420 files workload

 The power consumption of storing nodes

5.4 Effect of System Configuration

2014/1/27

20

Configuration #active nodes

 Gear 1

#active nodes

 Gear 2

#active nodes

Gear 3

Accordion-DP (4, 8, 12) 4 8 12

Accordion-DP (4, 12, 20) 4 12 20

Accordion-DP (8, 16, 24) 8 16 24

5.4.1 Effect of System Configurations on

Performance

2014/1/27

21

 Largest-scale configuration yielded best result due to the
load at each node is the lightest

 The higher gears gained better results in case of the same
active nodes

 The less complexity of primary and backup data

0

0,2

0,4

0,6

0,8

1

1,2

1,4

Gear 1 Gear 2 Gear 3

Accordion-DP (4, 8, 16)

Accordion-DP (4, 12, 20)

Accordion-DP (8, 16, 24)

Th
ro

ug
hp

ut
 p

e
r

W
a

tt

[MB/W]

 Propose an Accordion data placement for efficient
gear-shifting

 Reduced the execution time required for data movement by
66% and improved the performance by 30% compared
with Rabbit

 Ensured the smaller amount of reallocated data and
achieve better power-proportionality

 Different in primary data location

 Utilize the partitioning technique to reduce the seek time at each
node

 Shown the high potential for deployment in large-scale
systems

6.1 Conclusion

2014/1/27

22

 More experiment with different workloads and

system configurations

 Larger the scale, larger the number of gears

 Improve the load balancing algorithm

 Integrate Accordion with other architecture than

HDFS

 Consider a specific algorithm to deal with system

failures

6.2 Future Work

2014/1/27

23

THANK YOU FOR YOUR ATTENTION

Q&A

2014/1/27 2013 IEEE International Conference on BigData

24

