Toward Intrusion Tolerant Cloud Infrastructure

Daniel Obenshain, Tom Tantillo, Yair Amir

Department of Computer Science Johns Hopkins University

Andrew Newell, Cristina Nita-Rotaru Department of Computer Science Purdue University

http://www.dsn.jhu.edu

DSN03: The Overlay Paradigm

- Overlay paradigm:
 - In contrast to "keep it simple in the middle and smart at the edge"
 - Move intelligence and resources to the middle
 - Software-based overlay routers working on top of the internet
 - Overlay links translated to Internet paths
- Smaller overlay scale (# nodes) → smarter algorithms, better performance, and new services.

DSN03: Hop-by-Hop Reliability

- 50 millisecond network, five hops
 - 10 milliseconds to tell node DAL about the loss
 - 10 milliseconds to get the packet back from DAL
- Only 20 milliseconds to recover a lost packet
 - Lost packet sent twice only on link DAL ATL
 - In contrast to at least 100 milliseconds on the Internet

DSN03: Average Latency and Jitter

Yair Amir

0.5

0

1.5

1

Loss rate (%)

2

2.5

0.5

1

0

1.5

Loss rate (%)

2

2.5

[DSN03, NOSSDAV05, TOM06, Mobisys06, TOCS10]

- Daemons create an overlay network on the fly
- Clients are identified by the IP address of their daemon and a port ID
- Clients feel they are working with UDP and TCP using their IP and port identifiers
- Protocols designed to support up to 1000 daemons (locations), each daemon can handle up to about 1000 clients

Outline

- From overlay networks to clouds
 - Going back in time it all started with a DSN03 paper
 - From research to practice lessons learned
- Toward intrusion-tolerant cloud infrastructure
- Intrusion-tolerant cloud monitoring and control
 - Monitoring: Priority-based flooding with source fairness
 - Control: Reliable flooding with source-destination fairness
- Intelligent use of diversity to increase resiliency
 - The Diversity Assignment Problem (DAP)
 - Optimal assignments on a cloud
 - Naïve assignments can hurt
 - Application patterns matter
- Summary

6

2004-2006: The Siemens VoIP Challenge

- Can we maintain a "good enough" phone call quality over the Internet?
- High quality calls demand predictable performance
 - VoIP is interactive. Humans perceive delays at 100ms
 - The best-effort service offered by the Internet was not designed to offer any quality guarantees
 - Communication subject to dynamic loss, delay, jitter, path failures

50ms network delay

VoIP Quality Improvement

- Spines overlay 5 links of 10ms each
- 10 VoIP streams sending in parallel
- Loss on middle link C-D

50ms network delay

The Spines Architecture (2006)

2008-Present: The LiveTimeNet Cloud

Almost Reliable, Real-time Protocol for Live TV

Network packet loss on one link (assuming 66% burstiness)	Loss experienced by flows on the LTN Network
2%	< 0.0003%
5%	< 0.003%
10%	< 0.03%

Zooming on a Single Channel

From Research to Practice

Toward Intrusion Tolerant Clouds

- Main premise:
 - The large gap in constructing resilient clouds is the vulnerability to intrusions
 - No good algorithms to construct distributed messaging systems and consistent global state at cloud scale, guaranteeing their integrity and performance even under intrusion attacks
- Main goal:
 - Invent, develop and transition the overlay messaging and replication tools necessary to make public and private clouds resilient to sophisticated intrusion attacks

Outline

- From overlay networks to clouds
 - Going back in time it all started with a DSN03 paper
 - From research to practice lessons learned
- Toward intrusion-tolerant cloud infrastructure
- Intrusion-tolerant cloud monitoring and control
 - Monitoring: Priority-based flooding with source fairness
 - Control: Reliable flooding with source-destination fairness
- Intelligent use of diversity to increase resiliency
 - The Diversity Assignment Problem (DAP)
 - Optimal assignments on a cloud
 - Naïve assignments can hurt
 - Application patterns matter
- Summary

Intrusion-Tolerant Cloud Monitoring and Control

- Cloud infrastructure is remote to its administrators
 - Cloud management must be done through monitoring and control messaging
 - The chicken and the egg at least part of the cloud software has to work to allow its administrators to make it work (e.g. react to attacks)
- Result: Monitoring and control messaging has to be intrusion-tolerant
 - Instances of the messaging service may reside on compromised nodes
- But: no practical intrusion-tolerant messaging that can perform well in cloud environments

Controlled Authenticated Flooding

- Uses overlay topology and authentication to limit the power of incorrect (compromised) nodes
- Floods messages at most twice on each overlay link
- Optimal intrusion tolerance
- Optimal latency
- High cost up to 15-30 times higher than secure link-state overlay routing on relevant topologies
- Two protocols with differing properties and guarantees:
 - Monitoring: priority-based flooding with source fairness
 - Control: reliable flooding with source-destination fairness

Priority-based Flooding with Source Fairness

- The Need:
 - Motivated by the demands of a monitoring system in a cloud infrastructure
 - Distributing continuous streams of messages across a network that may contain compromised nodes
 - Any node in the network can be a source
 - Some messages are more critical than others
 - Delivery should be timely
 - If resources are constrained, critical information must pass

Priority-based Flooding with Source Fairness

- Main ideas:
 - Each overlay link schedules the next outgoing message by selecting a source with messages contending for this link based on a fair round-robin scheme
 - The highest priority message from the selected source is sent first
 - Memory buffer space and outgoing bandwidth is allocated on each overlay link based on a source-fair scheme
 - When memory is exhausted, the lowest priority message of the source with the most messages in the overlay link buffers is dropped first

Source Fairness for Malicious Environments Example

- Source A is sending at 10 Mbps, Source B at 50 Mbps, Source C at 60 Mbps, and link's capacity is 100 Mbps
- Source A gets all 10 Mbps
- Source B gets 45 out of the 50 Mbps it wants
- Source C gets 45 out of the 60 Mbps it wants

Priority-based Flooding with Source Fairness

Priority-based Flooding with Source Fairness

- Intrusion-Tolerant Point-to-Point Reliable Link Protocol
 - Compromised nodes can lie to cause good nodes to "run fast"
 - Use up good system resources (processing, bandwidth)
 - Intrusion-Tolerant Link Protocol ensures nodes can't ACK packets they never received
 - We include a nonce on each packet that must be included in the corresponding ACK

Priority-based Flooding Validation on a Cloud

Reliable Flooding with Source-Destination Fairness

- The Need:
 - Motivated by the demands of a control system in a cloud infrastructure
 - Any node in the network can be a source
 - All messages are critical because they change the state of the cloud
 - Messages must be delivered reliably
 - Delivery should be timely

The Problem of Source-based Fairness in Reliable Communication

• If we used source based fairness, a malicious destination could block a good source

- A sends to C and D, via B
- D is malicious and refuses to acknowledge packets
- A cannot make progress with either C or D (because it's a reliable protocol)

Source-Destination Fairness

• Instead, treat each source-destination flow separately.

- The A-D flow becomes blocked
- The A-C flow does not

Reliable Flooding with Source-Destination Fairness

- Main ideas:
 - A correct node maintains a message until either of the following conditions is met:
 - 1) All of its direct neighbors have it
 - 2) An end-to-end acknowledgement is received
 - Memory buffer space and outgoing bandwidth are allocated on each overlay link based on a sourcedestination pair fair scheme, so that bad destinations cannot block other flows by not acknowledging messages
 - Back pressure is employed all the way to the source if a source-destination pair exhausts its memory buffer

Reliable Flooding with Source-Destination Fairness

The Spines Architecture

The New Spines Architecture

Outline

- From overlay networks to clouds
 - Going back in time it all started with a DSN03 paper
 - From research to practice lessons learned
- Toward intrusion-tolerant cloud infrastructure
- Intrusion-tolerant cloud monitoring and control
 - Monitoring: Priority-based flooding with source fairness
 - Control: Reliable flooding with source-destination fairness
- Intelligent use of diversity to increase resiliency
 - The Diversity Assignment Problem (DAP)
 - Optimal assignments on a cloud
 - Naïve assignments can hurt
 - Application patterns matter
- Summary

The Diversity Assignment Problem (DAP)

- Undirected graph of client and network nodes
- Variants are compromised independently with a certain probability over a period of time
- If a variant is compromised, all nodes of that variant are assumed compromised
- Goodness is generally measured by overall client-to-client expected connectivity
- Find the diversity assignment that maximizes goodness

NP-Hard problem

Diversity Assignment Example

-Red: 90% resilience-Blue: 85% resilience

• Expected connectivity: 83.8%

• Expected connectivity: 95.7%

How one places variants in the network matters

Diversity Assignment on a Cloud Topology

- Topology based on how the LiveTimeNet guys build their global cloud
 - 20 overlay nodes (datacenters)
 - 10 clients randomly placed
 - Up to 4 variants with differing resilient properties
 - (Red 90%) (Blue 85%) (Green 80%) (Yellow 75%)
- Model
 - Variants are compromised independently with a certain probability over a period of time
 - If a variant is compromised, all nodes of that variant are assumed compromised
 - Goodness is generally measured by overall client-to-client expected connectivity

Baseline: No Diversity

- Without diversity just pick the most resilient variant
- Variant resilience: (Red 90%)
- Expected connectivity: 90%

Diversity with Two Variants

- Variant resilience: (Red 90%) (Blue 85%)
- Expected connectivity: 98.5%

Inclusion of a more vulnerable variant results in higher resilience

Diversity with Three Variants

- Variant resilience: (Red 90%) (Blue 85%) (Green 80%)
- Expected connectivity: 99.7%
- Even higher expected connectivity with another, even weaker variant

Naïve Assignments can Hurt

- 100,000 random assignments with 3 variants
 - Many random assignments have less than 90% expected connectivity (worse than without diversity)
 - Best value: 98.8%
 - *Expected dis-connectivity* = (1 expected connectivity)
 - Best random is 4x worse in terms of expected dis-connectivity:
 - 1.2% vs 0.3%

Diversity with Four Variants

- Resilience: (Red 90%) (Blue 85%) (Green 80%) (Yellow 75%)
- Expected client connectivity: 99.75%

Application-Specific Diversity

A BFT Test Case

- Run BFT on top of this diversified network
 - The state machine replicas are the clients from the point of view of the network
 - Rather than maximize any-to-any connectivity, we maximize the chance that BFT can make progress
 - BFT needs a connected component of at least 2f+1 good replicas out of a total of 3f+1 replicas
- Maximize the probability that a connected component of correct replicas exists

Diversity with Four Variants

- Resilience: (Red 90%) (Blue 85%) (Green 80%) (Yellow 75%)
- Expected client connectivity: 99.75%
- Probability of BFT progress: 99.7%

BFT-Specific Diversity

- Resilience: (Red 90%) (Blue 85%) (Green 80%) (Yellow 75%)
- Expected client connectivity: 98.06%
- Probability of BFT progress: 99.925%

Outline

- From overlay networks to clouds
 - Going back in time it all started with a DSN03 paper
 - From research to practice lessons learned
- Toward intrusion-tolerant cloud infrastructure
- Intrusion-tolerant cloud monitoring and control
 - Monitoring: Priority-based flooding with source fairness
 - Control: Reliable flooding with source-destination fairness
- Intelligent use of diversity to increase resiliency
 - The Diversity Assignment Problem (DAP)
 - Optimal assignments on a cloud
 - Naïve assignments can hurt
 - Application patterns matter
- Summary