Research Report: A Take on Component-Based Software Systems' Reliability

Thanh-Trung Pham, Xavier Défago, Quyet-Thang Huynh

School of Information Science, Japan Advanced Institute of Science and Technology (JAIST)

Context / Activities

- Protocol Composition
 - Protocol Design
 - Verifiable Composition
 - **Component Reliability**
 - Modeling
 - Prediction
 - Profiling
- Robot FT protocols / algorithms

Existing reliability prediction

- Usually assume that [Immonen et al., 2008]:
 - Sequential execution model
 - At any instance of time, only one component is executing.
 - Stopping failure model
 - Components fail independently
 - a component failure leads to a total system failure.

 Cannot model error propagation and concurrent/fault-tolerance executions

Parts

- Model
 - FT mechanisms
 - Error Propagation
- Tool
 - Automatic transformation / analysis
- Analysis
 - Sensitivity -> find reliability bottlenecks
 - Prediction -> specification assessment
- Validation
 - Using model / tool on actual software
 - Fault-injection

Component-based Reliability Prediction

Reliability Modeling Schema

Reliability Modeling Tool

A Sample of System Reliability Model

Assessment and Action

Sensitivity Analysis (Sample)

Conclusion

Reliability Modeling Tool

- Component based Model, Error propagation
- Automatic
- Design information
- Sensitivity

Ongoing

- More general FT techniques
 - Active replication, Exception handling,...
- Multiple Errors / Failure Modes / Interferences
- Validation
 - Document management / scanning software
 - Fault-injection