
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS INFORMATION TRUST INSTITUTE

Assured Cloud Computing

Roy Campbell
University of Illinois at Urbana-Champaign

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS INFORMATION TRUST INSTITUTE

Motivation

2

•  Assigned Tasks in Accordance with an Intended Purpose
to Accomplish an Assured Mission.

•  Hybrid (public, private, heterogeneous) clouds that
require the realization of “end-to-end” and “cross-
layered” security, dependability, and timeliness.

•  Configuration and management of dynamic
systems of systems with both trusted and
partially trusted resources

•  Services sourced from multiple organizations

Missions

Critical
Clouds

Multi-
tenancy

Middleware

Management

•  Control, monitoring, assessment of policies,
and response

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS INFORMATION TRUST INSTITUTE

NIST Definition

July 5, 2011:

The NIST Definition of Cloud Computing identified
cloud computing as:

„ [...] a model for enabling ubiquitous, convenient,
on-demand network access to a shared pool of
configurable computing resources (e.g., networks,
servers, storage, applications, and services) that can
be rapidly provisioned and released with minimal
management effort or service provider interaction.“

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS INFORMATION TRUST INSTITUTE

Mission: Dependability

Missions are tasks mapped to
dynamic resources made
available by cloud providers

Dependability: we need to
ensure that the mission
requirements will be met
even when resources are
shared

Mission Mission

Mission Mission

Mission

Middleware Layer aware of
the security and of the
performance of the
underlying resources

Mission requirements
mapped into resources

Continuous Monitoring ensures
requirements are met

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS INFORMATION TRUST INSTITUTE

Mission Requirements

Timeliness of computation
•  Fast, parallel, and

guaranteed to finish before
deadlines

–  “analysis of the map needs
to finish within 2 minutes”

5

Security of computation
•  Systems performing computation

respect security policies
–  “computation can be performed

only on DoD hosts”
–  “hosts running the computation

cannot run other clients’
computation at the same time”

–  “host providing authentication
should not be accessible from
outside the network”

Monitoring for Policy Compliance

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS INFORMATION TRUST INSTITUTE

Outline

•  Introduction to Assured Cloud Computing

•  Monitoring for Security Policy Compliance

–  Local Processing of Policies
–  Distributed Event Processing
–  Security of the Monitoring System

•  Experimental evaluation

•  Conclusions
6

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS INFORMATION TRUST INSTITUTE

Security Policy Compliance

7

•  Security is at the base of “Assured Cloud Computing”

•  Security requirements expressed through “policies” that
indicate minimal security requirements

–  Approach used in the US by FISMA, PCI-DSS, NERC CIP

Examples:
•  A critical device should be placed within a security perimeter
•  Unprotected devices should not communicate with machines

running critical services
•  Computation on confidential data must performed on hosts under

the control of DoD

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS INFORMATION TRUST INSTITUTE

Related Work
•  Policy-driven approaches to security

–  FISMA, NERC, PCI-DSS all provide documents specifying security
requirements on the infrastructure

–  Compliance measured through periodic assessments
•  Cloud monitoring

–  Monitoring of continuous variables
•  [Meng et al. – K&DE 2011], [Laguna et al. – Middleware 2009] and others

–  Open-source architecture for monitoring [Chaves et al. – IEEECOMM 2011]

–  We look at discrete events and we show how knowledge of policies can
optimize the process

•  Access control policy compliance monitoring
–  Focus on complex policies and small number of event generator

•  e.g, [Garg et al. - CCS 2011], [Lam el al. – TRUSTBUS 2009]

•  Discrete Event Systems [PADRES, AMIT]
–  We focus on system monitoring and we exploit the fact that events

describe resources for optimizing processing
8

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS INFORMATION TRUST INSTITUTE

Events as Monitoring Data

•  Monitoring compliance requires information about the state of
the system – Discrete Event Processing

Policy
Policy

Policy

… Cloud Computing
Infrastructure

SNMP IDS Applications Syslog

Event Generation

Policy Compliance
Monitoring System Event Correlation Engine

Policy violation
(Complex Events)

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS INFORMATION TRUST INSTITUTE

Policy
Aggrega-
tion Tree

Policy
Aggrega-
tion Tree

Event Correlation

Local Event Processing

Discrete Event Processing for Policy Monitoring

•  Distribution of processing enables scalability and security
•  Policies define how events are processed across hosts

…

violation 	

 B reachService S, 	

 B connectedTo N,	

 B controlledBy U, 	

 W hasVulnerability V,	

 S usesSoftware W, 	

 A provideService S, 	

 A connectedTo N, 	

Integrity

Policies expressed in Datalog / RDF
•  RDF statement: subject, predicate, object	

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS INFORMATION TRUST INSTITUTE

Policy Analysis

controlledBy	

connectedTo	
 provideService	
 usesSoftware	
 hasVuln	

•  Analyze policies to distribute the event correlation process
•  RDF Policies represented as graphs

•  Variables are nodes, edges are predicates

violation B reachService S, B connectedTo N, B controlledBy U, 	

	
 W hasVulnerability V, S usesSoftware W, 	

 A provideService S, A connectedTo N 	

Graph-based analyses enable:

1.   Local Event Processing
2.   Distributed event correlation
3.   Redundancy
4.   Host failure detection

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS INFORMATION TRUST INSTITUTE

1) Local Event Middleware

Communication Policy D
istribution

SNMP
VM

Introspection

Inference
Engine

Local Event Handler

Local Agent

…

Policies are distributed to a
monitoring middleware present
on local hosts

Local event processing detects
violations based on complex
events generated locally

Distributed reasoning is used for
correlating events across
multiple hosts

12

Partial processing of policies is delegated to local nodes
to reduce the overall event exchange

Montanari M., Chan E., Larson K., Yoo W., Campbell R.H. , "Distributed Security Policy Conformance," IFIP SEC 2011

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS INFORMATION TRUST INSTITUTE

1) Local Policy Identification

controlledBy	

connectedTo	
 provideService	
 usesSoftware	
 hasVuln	

•  Definition of Local Portion of the policy
•  Exploits knowledge about what is being monitored
•  Only events satisfying all local conditions are forwarded outside

If we are monitoring an host A, we know all its
services, its connections and the software its
services are using

Monitoring system meta-
info used for identifying
local “complete” events

provideService	
 usesSoftware	
connectedTo	

hasVuln	

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS INFORMATION TRUST INSTITUTE

1) Local Policy Equivalent Rewrite

controlledBy	

connectedTo	
 provideService	
 usesSoftware	
 hasVuln	

•  Local portion of the policy is processed in the inference engine

Communication Policy D
istribution

SNMP
VM

Introspection

Inference
Engine

Local Event Handler

Local Agent

…

local(N, A, S) 	

 A connectedTo N 	

 A provideService S 	

 S useSoftware W 	

 W hasVuln V	

violation 	

 local(N, A, S), 	

 B connectedTo N, 	

 B controlled U	

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS INFORMATION TRUST INSTITUTE

2) Distributed Correlation – Basic Architecture
Monitoring
Server

15

Client A Service B

Service C

A client with “critical” security
requirements should not use a
service on a vulnerable machine

clientA
requirements

critical	

clientA

useService
serviceB	
 serviceB 	

hasVuln	

vul1	

serviceC
hasVuln	

vul1	

useService 	
 hasVuln	

requirements 	

Montanari M., Campbell R., Attack-resilient Compliance Monitoring for Large Distributed Infrastructure Systems. IEEE NSS 2011

Intuition: two events
connected in the graph
share the value for one
of the variables

violation C requirements critical, 	

 C useService S, 	

 S hasVuln V	

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS INFORMATION TRUST INSTITUTE

Monitoring
Server

16

Client A Service B

Service C

A client with “critical” security
requirements should not use a
service on a vulnerable machine

clientA
requirements

critical	

clientA

useService
serviceB	
 serviceB 	

hasVuln	

vul1	

serviceC
hasVuln	

vul1	

useService 	
 hasVuln	

requirements 	

Intuition: two events
connected in the graph
share the value for one
of the variables

2) Distributed Correlation – Basic Architecture

violation C requirements critical, 	

 C useService S, 	

 S hasVuln V	

Montanari M., Campbell R., Attack-resilient Compliance Monitoring for Large Distributed Infrastructure Systems. IEEE NSS 2011

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS INFORMATION TRUST INSTITUTE

2) Distributed Correlation

17

serviceB	

 hasVuln	

vul1	
clientA

useService
serviceB	

We use the policy to define Aggregation
Policy Trees that correlate subsets of the

policy at each level

dist(C) 	

 C useService S, 	

 S hasVul V	

Different portions of the
policy are matched at

different nodes, and the
result is forwarded so that

validation can continue

useService 	
 hasVuln	

requirements 	

serviceB	

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS INFORMATION TRUST INSTITUTE

2) Distributed Correlation

18

clientA
requirements

critical	

serviceB	

 hasVuln	

vul1	
clientA

useService
serviceB	

serviceC 	

hasVuln	

vul1	

We use the policy to define Aggregation
Policy Trees that correlate subsets of the

policy at each level

violation dist(C),	

 C requirements critical	

Aggregation
Policy Tree

Aggregation
Policy Tree

Different portions of the
policy are matched at

different nodes, and the
result is forwarded so that

validation can continue

dist	

requirements 	

dist(C) 	

 C useService S, 	

 S hasVul V	

serviceB	

clientA 	

serviceC 	

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS INFORMATION TRUST INSTITUTE

2) Distributed Online Rule Analysis

19

Intuition formalized in an algorithms with two steps

Compilation: Creates a set of rule elements and state triggers

Execution: Messages are exchanged across hosts

violation 	

 C requirements critical, 	

 C useService S, 	

 S hasVulnerability V	

State triggers: define
which messages to send and
their destination

Rule elements: partial
validation of the policy

State triggers
Rule elements

State triggers
Rule elements

State triggers
Rule elements

aggregation tree

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS INFORMATION TRUST INSTITUTE

3) Protecting against server integrity compromises

20

violation 	

 C requirements critical, 	

 C useService S, 	

 S hasVuln V	

clientA
useService
serviceB	

serviceB
hasVuln
vul1	

The compromise of one server does not affect integrity

The compromise of the majority of servers at the same level only
affects one aggregation tree, not the entire policy validation

Each level of the policy aggregation tree
can be made redundant

serviceB	

clientA 	

clientA
requirements

critical	

Limited load on each
server permits to do
redundant work without
affecting performance

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS INFORMATION TRUST INSTITUTE

4) Detection of host failures

Scalable communication and detection of failures obtained by
building the system on top of a DHT

21

serviceB	

 hasVuln	

vul1	
clientA

useService
serviceB	

clientA

serviceB

serviceC 	

hasVuln	

vul1	

serviceC

…

Correlation servers are
connected using a DHT

clientA
requirements

critical	

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS INFORMATION TRUST INSTITUTE

4) Detection of Failures

Scalable communication and detection of failures obtained by
building the system on top of a DHT

22

serviceB	

 hasVuln	

vul1	
clientA

useService
serviceB	

H(clientA)

H(serviceB)

serviceC 	

hasVuln	

vul1	

H(serviceC)

…

clientA
requirements

critical	

Correlation servers are
connected using a DHT

Name of resources is used for
selecting the correlation node
to use

Automatic reconfiguration
after server failures

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS INFORMATION TRUST INSTITUTE

4) Detection of failures

Scalable communication and detection of failures obtained by
building the system on top of a DHT

23

serviceB	

 hasVuln	

vul1	

clientA
useService
serviceB	

H(clientA)

H(serviceB)

serviceC 	

hasVuln	

vul1	

H(serviceC)

…

clientA
requirements

critical	

Correlation servers are
connected using a DHT

Name of resources is used for
selecting the correlation node
to use

Automatic reconfiguration
after server failures

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS INFORMATION TRUST INSTITUTE

Experimental Results

•  Odessa implemented in Java and C
–  Communication built on top of Freepastry
–  To increase the trustworthiness of agents, we run them in Dom0

when possible.

24

Mechanism Configuration obtained

Dom0 (XenAccess, file system) Running processes, network
connections, configuration files

Host VM (Linux kernel module) Fast detection of new network
communications

•  Using such information, we implemented policies for validating:
–  Presence of specific programs
–  NFS authorizations across networks
–  Attack graph generation

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS INFORMATION TRUST INSTITUTE

Delegation Experiments: Reduced Load

25

Local processing reduces
the amount of events
delivered (rule size: local
portion of the rule)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 5 10 15 20 25 30

Av
g

de
la

y
[s

]

Msgs / min

p=3
p=5

Fig. 3. Delay in the detection of agent
failures.

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

%
 C

ha
ng

es
 tr

an
sm

itt
ed

Rule size

k=1
k=3

Fig. 4. Agents’ statements transferred as
consequences of configuration changes.

each host is registered to several trees, even the failures of all hosts in a branch
of the tree are detected by the parent hosts in other trees.

6 Implementation and Evaluation

We implemented the components of the Odessa system using a combination
of C and Java. The communication between monitoring agents and verifiers is
implemented on the FreePastry system. Inference is performed by using the rule-
based inference system Jena [3]. The monitoring agents run in the Dom0 virtual
machine of a Xen installation. They monitor guest VMs by accessing the host
state using an extension of XenAccess [14]. A Linux kernel module is installed
on guest VMs to provide additional information about the state of the system
which are not easily accessible using XenAccess.

We ran the system on a real network and we validated a set of test rules
which include (i) checking the presence of specific programs, (ii) checking NFS
authorization for access control misconfigurations that give unprivileged users
access to restricted files, (iii) and validating that critical machines are protected
from external attacks. Our system was able to delegate the validation of rules
(i) and (ii) to each host, and it was able to decompose rule (iii) into a local
portion and a global portion. The local portion shares statements about the
host address and about vulnerable programs running on the system, which are
identified using the National Vulnerability Database (NVD)4. The global portion
integrates this information across the network and computes if a specific host
can be compromised by an external attacker using logic attack graphs. We use
our prototype to measure the possible delay in the verification that an attacker
can introduce by performing DoS on predicate group roots before a new verifier
is registered. We found that the FreePastry implementation already provides a
delay limited to an average in the order of tens of seconds. The tradeoff between
message frequency and delay in the detection of failures is shown in Figure 3.
The parameter p represents the number of communication attempts made before
declaring an agent dead. The results are an average of 20 executions.

To measure the scalability characteristics of Odessa, we performed several
simulations using random models of large-scale systems. The first experiments

4 NVD: National Vulnerability Database V2.2 http://nvd.nist.gov/.

 100

 200

 300

 400

 500

 600

 700

 800

 40 60 80 100 120 140 160 180 200

d
e

la
y

[m
s]

hosts

min-1
min-3
min-5
max-1
max-3
max-5

Fig. 4. Delay in the detection of violations over the number
of servers. We consider a rule length of 3 resources.

 200

 300

 400

 500

 600

 700

 800

 900

 1000

2 3 4 5

d
e

la
y

[m
s]

rule length

dora-max-1
dora-max-3
dora-max-5

Fig. 5. Delay [ms] in the detection of violations over the length
of the policy. We consider a network of 100 hosts.

 0

 50

 100

 150

 200

 250

 300

 40 60 80 100 120 140 160 180 200

a
vg

 #
 s

ta
te

m
e

n
ts

 p
e

r
n

o
d

e
hosts

dora-1
dora-3
dora-5

centralized

Fig. 6. Statements stored in each server over the size of the
infrastructure. We consider a rule length of 3 resources.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 40 60 80 100 120 140 160 180 200

#
 m

sg
s

hosts

dora-1
dora-3
dora-5

centralized-5
centralized-1

Fig. 7. Total number of messages in the system as a function of
the size of the network. We consider a rule length of 3 resources.

to policies which represents the number of resources involved
in its evaluation. Policy are expressed as chains of statement
p1(a, b), p2(b, c), p3(c, d) → violation(a, d). Long policies
are representative of complex policies that need to integrate
information across several resources.

A. Performance experiments

We compare the different performance dimensions of our
system with the performance of a centralized monitoring
system. The parameters of the two systems are set so that
each device in the infrastructure communicates with the same
number of monitoring servers. For example, in a triple redun-
dant system for monitoring, each device sends its monitored
events to three monitoring servers. In our architecture, we use
three redundant paths so that each device sends data to three
different monitoring servers.

The first set of experiments measures the overhead in-
troduced by our monitoring architecture. We measure the
overhead in term of memory, communication, and delay.
To quantify the memory overhead, we measure the state
information stored in each monitoring server. For simplicity,
we considered a network with the same number of devices
and monitoring servers. We find that the Dora architecture is
successful in distributing statements across monitoring servers,
and that each monitoring server only needs to store locally
a very limited amount of state information. We show these

results in Fig. 6. Additionally, we measure the communi-
cation overhead introduced by the Dora algorithm. Even if
Dora introduces more message exchanges, we find that the
amount of communication grows linearly with the size of the
infrastructure as in the centralized solution. Additionally, the
overhead introduced by Dora remains acceptable as the load
is distributed across several monitoring servers. These data
are shown in Fig. 7. The delay in detecting messages also
remains in acceptable limits. We measure the minimum and
maximum delay in detecting policy violations for different
network sizes, different policy lengths, and different amount
of replication. The results are shown in Fig. 4 and Fig. 5.
Introducing replication reduces the min and max delay as the
larger number of rendezvous points reduces the possibility that
a few slow communication links slow down the entire process.

B. Security evaluation

The second set of experiments measures the robustness
of our solution to confidentiality and integrity attacks. We
compare our solution to a replicated centralized architecture.

We estimate the robustness of the architecture to confi-
dentiality attacks by measuring the amount of state informa-
tion provided to attackers when a set of random nodes is
compromised. We assume that the compromise of a server
provides attackers all information contained in it (i.e., local KB
and forwarding KB). We measure the amount of information

 100

 200

 300

 400

 500

 600

 700

 800

 40 60 80 100 120 140 160 180 200

d
e
la

y
[m

s]

hosts

min-1
min-3
min-5
max-1
max-3
max-5

Fig. 4. Delay in the detection of violations over the number
of servers. We consider a rule length of 3 resources.

 200

 300

 400

 500

 600

 700

 800

 900

 1000

2 3 4 5

d
e
la

y
[m

s]

rule length

dora-max-1
dora-max-3
dora-max-5

Fig. 5. Delay [ms] in the detection of violations over the length
of the policy. We consider a network of 100 hosts.

 0

 50

 100

 150

 200

 250

 300

 40 60 80 100 120 140 160 180 200

a
vg

 #
 s

ta
te

m
e
n
ts

 p
e
r

n
o
d
e

hosts

dora-1
dora-3
dora-5

centralized

Fig. 6. Statements stored in each server over the size of the
infrastructure. We consider a rule length of 3 resources.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 40 60 80 100 120 140 160 180 200

#
 m

sg
s

hosts

dora-1
dora-3
dora-5

centralized-5
centralized-1

Fig. 7. Total number of messages in the system as a function of
the size of the network. We consider a rule length of 3 resources.

to policies which represents the number of resources involved
in its evaluation. Policy are expressed as chains of statement
p1(a, b), p2(b, c), p3(c, d) → violation(a, d). Long policies
are representative of complex policies that need to integrate
information across several resources.

A. Performance experiments

We compare the different performance dimensions of our
system with the performance of a centralized monitoring
system. The parameters of the two systems are set so that
each device in the infrastructure communicates with the same
number of monitoring servers. For example, in a triple redun-
dant system for monitoring, each device sends its monitored
events to three monitoring servers. In our architecture, we use
three redundant paths so that each device sends data to three
different monitoring servers.

The first set of experiments measures the overhead in-
troduced by our monitoring architecture. We measure the
overhead in term of memory, communication, and delay.
To quantify the memory overhead, we measure the state
information stored in each monitoring server. For simplicity,
we considered a network with the same number of devices
and monitoring servers. We find that the Dora architecture is
successful in distributing statements across monitoring servers,
and that each monitoring server only needs to store locally
a very limited amount of state information. We show these

results in Fig. 6. Additionally, we measure the communi-
cation overhead introduced by the Dora algorithm. Even if
Dora introduces more message exchanges, we find that the
amount of communication grows linearly with the size of the
infrastructure as in the centralized solution. Additionally, the
overhead introduced by Dora remains acceptable as the load
is distributed across several monitoring servers. These data
are shown in Fig. 7. The delay in detecting messages also
remains in acceptable limits. We measure the minimum and
maximum delay in detecting policy violations for different
network sizes, different policy lengths, and different amount
of replication. The results are shown in Fig. 4 and Fig. 5.
Introducing replication reduces the min and max delay as the
larger number of rendezvous points reduces the possibility that
a few slow communication links slow down the entire process.

B. Security evaluation

The second set of experiments measures the robustness
of our solution to confidentiality and integrity attacks. We
compare our solution to a replicated centralized architecture.

We estimate the robustness of the architecture to confi-
dentiality attacks by measuring the amount of state informa-
tion provided to attackers when a set of random nodes is
compromised. We assume that the compromise of a server
provides attackers all information contained in it (i.e., local KB
and forwarding KB). We measure the amount of information

Correlation servers need to store a limited number
of events and send a limited number of messages

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 5 10 15 20 25

#
 s

ta
te

m
e
n
ts

compromised hosts

dora-1
dora-3
dora-5

centralized-1

Fig. 8. Number of statements about the state of the system
obtained by the attacker when x nodes are compromised. We
consider a network of 100 hosts and a rule length of 3 resources.

 0

 2

 4

 6

 8

 10

 0 5 10 15 20 25

#
 v

io
la

tio
n
s

d
e
te

ct
e
d

compromised hosts

dora-1
dora-3
dora-5

centralized

Fig. 9. Number of violations detected when x hosts are
compromised. We consider a network of 100 hosts and a rule
length of 3 resources.

leaked as the number of distinct statements acquired by the
attacker. We find that, in the Dora architecture, the amount
of statements acquired grows linearly with the number of
compromised machines. In the centralized system, the entire
information about the state is compromised as soon as one
server is compromised. These results are shown in Fig. 8.

We estimate the robustness of the architecture to attacks
toward the monitoring integrity by measuring its ability to
operate when part of the monitoring machines is compromised.
We focus on hiding violations and we implement compromised
machines as machine dropping application packets so that
statements matching policies are not detected. We perform
a set of experiments where we randomly select monitoring
servers to compromise. The performance of our system de-
grades gratefully as the number of compromised machines
increases. In a centralized architecture, the transition from a
safe monitoring system to a compromise monitoring system
is abrupt. Once the few machines that maintain the replicated
view of the system are compromised, the entire state of
the system cannot be trusted anymore. The results of these
experiments are shown in Fig. 9.

In summary, we show that our architecture provides a little
overhead in each of the machine that are part of the monitoring
system, and increases robustness to compromises.

VI. CONCLUSIONS

We presented a robust architecture for validating compli-
ance to security policies in large-scale systems. The task of
aggregating the system state and validating its compliance is
distributed across several devices so that no single server stores
the entire state of the system, and so that a limited number
of compromised devices cannot affect the validation process
by hiding violations or introducing fictitious violations. Our
evaluation shows how the load introduced in the infrastructure
by the monitoring system is low, and how the robustness to
confidentiality and integrity compromises is increased.

In our future work we will focus on several issues. First,
we will focus on improving the Dora algorithm by introduc-
ing different optimization functions (e.g., reduce information
stored on each node) in the choice of the root node during the

compilation process. Second, our algorithm does not include a
concept of time: causal relations between events are currently
ignored, and this could create a false positives or false nega-
tives for a short period of time. While compliance validation
focuses on long-lived violations and temporary conditions does
not present a problem, a general monitoring system would
benefit from the ability of tracking these relations. Third, we
plan to deploy our architecture in a distributed infrastructure
to validate the results obtained in our simulations.

ACKNOWLEDGEMENTS

This material is based on research sponsored by the Air Force
Research Laboratory and the Air Force Office of Scientific Research,
under agreement number FA8750-11-2-0084. The U.S. Government
is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon.

This work was partially supported by the Boeing Trusted Software
Center.

REFERENCES

[1] K. Dempsey, A. Johnson, A. C. Jones, A. Orebaugh, M. Scholl, and
K. Stine, “Information Security Continuous Monitoring for Federal
Information Systems and Organizations,” NIST, Tech. Rep., 2010.

[2] Joint Task Force Transformation Initiative, “Recommended Security
Controls for Federal Information Systems and Organizations - SP 800-
53,” NIST, Tech. Rep. August 2009, 2009.

[3] North American Electric Reliability Corporation, “NERC CIP 002-009,”
NERC - North American Electric Reliability Corporation, Tech. Rep.,
2007.

[4] Payment Card Industry Security Standards Council, “Payment Card
Industry (PCI) Data Security Standard,” Tech. Rep. October, 2010.

[5] Tenable Network Security, “Nessus: the Network Vulnerability
Scanner,” 2009. [Online]. Available: http://nessus.org/nessus/

[6] X. Ou, W. Boyer, and M. McQueen, “A scalable approach to attack
graph generation,” in Proceedings of the 13th ACM conference on
Computer and communications security. ACM, 2006, p. 345.

[7] M. Montanari, E. Chan, K. Larson, W. Yoo, and R. H. Campbell,
“Distributed Security Policy Conformance,” in IFIP International In-
formation Security Conference, 2011.

[8] Z. Anwar and R. Campbell, “Automated Assessment of Compliance
with Security Best Practices,” Critical Infrastructure Protection II, vol.
290, pp. 173–187, 2009.

[9] R. H. Campbell and M. Montanari, “Multi-Aspect Security Configura-
tion Assessment,” in ACM Workshop on Assurable & Usable Security
Configuration (SafeConfig), 2009.

[10] M. Montanari, R. H. Campbell, K. Sampigethaya, and M. Li, “A
Security Policy Framework for eEnabled Fleets and Airports,” in IEEE
Aerospace Conference, 2011.

Replication provides
graceful degradation of
integrity in case of
compromises

 100

 200

 300

 400

 500

 600

 700

 800

 40 60 80 100 120 140 160 180 200

d
e

la
y

[m
s]

hosts

min-1
min-3
min-5
max-1
max-3
max-5

Fig. 4. Delay in the detection of violations over the number
of servers. We consider a rule length of 3 resources.

 200

 300

 400

 500

 600

 700

 800

 900

 1000

2 3 4 5

d
e

la
y

[m
s]

rule length

dora-max-1
dora-max-3
dora-max-5

Fig. 5. Delay [ms] in the detection of violations over the length
of the policy. We consider a network of 100 hosts.

 0

 50

 100

 150

 200

 250

 300

 40 60 80 100 120 140 160 180 200

a
vg

 #
 s

ta
te

m
e

n
ts

 p
e

r
n

o
d

e

hosts

dora-1
dora-3
dora-5

centralized

Fig. 6. Statements stored in each server over the size of the
infrastructure. We consider a rule length of 3 resources.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 40 60 80 100 120 140 160 180 200

#
 m

sg
s

hosts

dora-1
dora-3
dora-5

centralized-5
centralized-1

Fig. 7. Total number of messages in the system as a function of
the size of the network. We consider a rule length of 3 resources.

to policies which represents the number of resources involved
in its evaluation. Policy are expressed as chains of statement
p1(a, b), p2(b, c), p3(c, d) → violation(a, d). Long policies
are representative of complex policies that need to integrate
information across several resources.

A. Performance experiments

We compare the different performance dimensions of our
system with the performance of a centralized monitoring
system. The parameters of the two systems are set so that
each device in the infrastructure communicates with the same
number of monitoring servers. For example, in a triple redun-
dant system for monitoring, each device sends its monitored
events to three monitoring servers. In our architecture, we use
three redundant paths so that each device sends data to three
different monitoring servers.

The first set of experiments measures the overhead in-
troduced by our monitoring architecture. We measure the
overhead in term of memory, communication, and delay.
To quantify the memory overhead, we measure the state
information stored in each monitoring server. For simplicity,
we considered a network with the same number of devices
and monitoring servers. We find that the Dora architecture is
successful in distributing statements across monitoring servers,
and that each monitoring server only needs to store locally
a very limited amount of state information. We show these

results in Fig. 6. Additionally, we measure the communi-
cation overhead introduced by the Dora algorithm. Even if
Dora introduces more message exchanges, we find that the
amount of communication grows linearly with the size of the
infrastructure as in the centralized solution. Additionally, the
overhead introduced by Dora remains acceptable as the load
is distributed across several monitoring servers. These data
are shown in Fig. 7. The delay in detecting messages also
remains in acceptable limits. We measure the minimum and
maximum delay in detecting policy violations for different
network sizes, different policy lengths, and different amount
of replication. The results are shown in Fig. 4 and Fig. 5.
Introducing replication reduces the min and max delay as the
larger number of rendezvous points reduces the possibility that
a few slow communication links slow down the entire process.

B. Security evaluation

The second set of experiments measures the robustness
of our solution to confidentiality and integrity attacks. We
compare our solution to a replicated centralized architecture.

We estimate the robustness of the architecture to confi-
dentiality attacks by measuring the amount of state informa-
tion provided to attackers when a set of random nodes is
compromised. We assume that the compromise of a server
provides attackers all information contained in it (i.e., local KB
and forwarding KB). We measure the amount of information

 Delay in detection
violations remains limited

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS INFORMATION TRUST INSTITUTE

Future Work

•  Synthesize global properties from placement

•  Confidentiality of monitoring data
–  Protecting confidentiality of event data both within a cloud and in

between cloud providers

•  Integrity of event sources
–  What if data are corrupted at the source?

•  Explore automatic reconfigurations in assured cloud computing
–  Policy violation data can be used for reacting to problems

•  Availability

26

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS INFORMATION TRUST INSTITUTE

Conclusions
•  Assured Cloud Computing requires technologies that permit predictability

in performance and in security.

•  Monitoring is required for maintaining dependability, security, and
performance in a dynamic cloud environment

•  We focus on policy compliance to monitor security requirements

•  Our approach formalizes analyses of policy languages to identify
appropriate distributed placements for security policy compliance
evaluation

–  We use information about the distributed system and the policies to
generate a set of equivalent rules to enable a scalable and secure
detection of complex events

•  Our approach outperforms centralized approaches and protects the system
against integrity compromises

27

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS INFORMATION TRUST INSTITUTE

Bibliography

[Meng et al. – K&DE 2011] Meng, S., & Liu, L. (2011). State Monitoring in Cloud Datacenters. Knowledge and
Data Engineering, IEEE Transactions on, 23(9), 1328-1344.

[Chaves et al. – IEEECOMM 2011] Chaves, S. A. D., Uriarte, R. B., & Westphall, C. B. (2011). Toward an
Architecture for Monitoring Private Clouds. IEEE Communications Magazine,
(December), 130-137.

[Garg et al. - CCS 2011] Deepak Garg, Limin Jia and Anupam Datta. Policy Auditing over Incomplete Logs:
Theory, Implementation and Applications. ACM CCS 2011

[Lam el al. – TRUSTBUS 2009] Peifung E. Lam, John C. Mitchell and Sharada Sundaram. A Formalization of
HIPAA for a Medical Messaging System. Lecture Notes in Computer Science, 2009, Volume 5695/2009, 73-85.

[Laguna et al. – Middleware 2009] Ignacio Laguna, Fahad A. Arshad, David M. Grothe and Saurabh Bagchi. How
to Keep Your Head above Water While Detecting Errors. IFIP/ACM/IEEE Middleware 2009

[PADRES] Fidler, E., Jacobsen, H., & Li, G. (2005). The PADRES distributed publish/subscribe system. Feature
Interactions in Telecommunications and Software Systems.

[AMIT] Adi, A., & Etzion, O. (2004). Amit-the situation manager. The VLDB Journal â �� The International Journal
on Very Large Data Bases, 13(2)

28

