
On Emergent Misbehavior

John Rushby

With help from Hermann Kopetz

Computer Science Laboratory

SRI International

Menlo Park CA USA

John Rushby, SR I Emergent Misbehavior 1



Emergence

• We build systems from components, but systems have

properties not possessed by their individual components

• Emergence is the idea that complex systems may posses

properties that are different in kind than those of their

components: described by different languages

◦ e.g., velocities of atoms vs. temperature of gas

◦ e.g., neuron activity in the brain vs. thoughts in the mind

• Weak emergence: you can compute the emergent properties

from those of components (but only by simulation)

◦ Complicated vs. complex systems

• Strong emergence: not so—interactions at emergent level

propagate back to the components (downward causation)

◦ E.g., flock flowing around an obstruction: motion looks

random to individual responding to actions of neighbors

John Rushby, SR I Emergent Misbehavior 2



Emergent Misbehavior

• There’s good emergence and bad

• In particular, complex systems can have failures not predicted

from their components, interactions, or design

• Emergent or just unexpected?

• Probably the latter, but in sufficiently complicated contexts

that it may be useful to consider these failures as different in

kind than the usual ones

• My speculation is that weak emergence explains most

• But maybe some are due to downward causation

• In any case, a possibly useful new way to look at failures

John Rushby, SR I Emergent Misbehavior 3



Examples

• Jeff Mogul’s paper:

◦ Mostly OS and network examples concerning performance

and fairness degradation rather than outright failure

◦ e.g., router synchronization

◦ Note that these properties are expressed in the language

of the emergent system, not the components

• Feature interaction in telephone systems

• 1993 shootdown of US helicopters by US planes in Iraq

• West/East coast phone and power blackouts

• Massive freeway pileups

John Rushby, SR I Emergent Misbehavior 4



Even “Correct” Systems

Can Exhibit Emergent Misbehavior

• We have components with verified properties, we put them

together in a design for which we require properties P, Q, R,

etc. and we verify those, but the system fails in

operation. . . how?

• There’s a property S we didn’t think about

◦ Maybe because it needs to be expressed in the language

of the emergent system, not in the language of the

components

◦ If we’d tried to verify it, we’d have found the failure

◦ But it’s hard to anticipate all the things we care about in

a complicated system

• Call these unanticipated requirements

John Rushby, SR I Emergent Misbehavior 5



Even “Correct” Systems

Can Exhibit Emergent Misbehavior (ctd.)

• We verified that interactions of components A and B deliver

property P and that A and C deliver Q, taking care of

failures appropriately

• But there’s an interaction we didn’t think about

◦ We didn’t anticipate that some behaviors of C (e.g.,

failures) could affect the interactions of A and B, hence P

is violated even though A and B are behaving correctly

(and so is C, wrt. the property Q)

• Call these unanticipated interactions

(or overlooked assumptions)

John Rushby, SR I Emergent Misbehavior 6



Causes of Emergent Misbehavior

• I think they all come down to ignorance

• There is no accurate description of an emergent system

simpler than the system itself

• All our analysis and verification are with respect to

abstractions and simplifications, hence we are ignorant about

the full set of behaviors

• More particularly, we may be ignorant about

◦ The complete set of requirements we will care about in

the composed system

◦ The complete set of behaviors of each component

◦ The complete set of interactions among the components

John Rushby, SR I Emergent Misbehavior 7



How to Eliminate or Control Emergent Misbehavior

• Identify and reduce ignorance

• Eliminate or control unanticipated behaviors and interactions

◦ i.e., deal with the manifestations of ignorance

• Engineer resilience

◦ i.e., adapt to the consequences of ignorance

John Rushby, SR I Emergent Misbehavior 8



Identify and Reduce Ignorance

Vinerbi, Bondavalli, and Lollini propose tracing ignorance as

part of requirements engineering

• Qualitatively quantify it (e.g., low, medium, high)

• Have rules how it propagates though AND and OR etc.

• If it gets too large, consider replacing a source of high

ignorance (e.g., COTS, or another system) by a

better-understood and more limited component

John Rushby, SR I Emergent Misbehavior 9



Identify and Reduce Ignorance (ctd.)

• We have to try and think of everything

• This is what hazard analysis is about in safety-critical systems

• There are systematic ways to go about it (e.g., HAZOP)

• But I think it needs to be put on a more formal footing

◦ And that automated support is needed

• There are some promising avenues for doing this

◦ e.g., model checking very abstract designs

◦ Using SMT solvers for infinite bounded model checking

with uninterpreted functions

John Rushby, SR I Emergent Misbehavior 10



Identify and Reduce Ignorance (ctd. 2)

• Black and Koopman observe that safety goals are often

emergent to the system components

• e.g., the concept (no) “collision” might feature in the

top-level safety goal for an autonomous automobile

• But “collision” has no meaning for the brake, steering, and

acceleration components

• That’s why FAA certifies only complete airplanes and engines

• They suggest identifying local goals for each component

whose conjunction is equivalent to the system safety goal,

recognizing that some unknown additional element X may be

needed (because of emergence) to complete the equivalence

• An objective is then to minimize X

• Closely related to hazard analysis, in my view

John Rushby, SR I Emergent Misbehavior 11



Eliminate Unanticipated Behaviors and Interactions

• Behaviors and interactions due to superfluous functionality

◦ e.g., use of a COTS component where only a subset of

its capabilities is required

◦ Or functions with many options where only some should

be used

These can be eliminated by wrapping or partial evaluation

• Interactions that use unanticipated pathways

◦ E.g., A writes into B’s memory

◦ Or tramples on its bus transmissions

◦ Or monopolizes the CPU

These can be eliminated by strong partitioning of resources

John Rushby, SR I Emergent Misbehavior 12



Control Unanticipated Behaviors and Interactions

• Unanticipated behaviors on known interaction pathways

◦ e.g., unclean failures

◦ Local malfunction

These can be controlled by strong monitoring

◦ Monitor component behavior against system

requirements; shutdown on failure

◦ Monitor assumptions; treat source component (or self?)

as failed when violated

John Rushby, SR I Emergent Misbehavior 13



Engineer for Resilience

• Our diagnosis is very similar to Perrow’s Normal Accidents

• In his terms, we aim to reduce interactive complexity and

tight coupling

• One way to do both is to increase the autonomy of

components

◦ i.e., they function as goal-directed agents

◦ e.g., substitute runtime synthesis for design-time analysis

(both use formal methods, but in different ways)

• But then may be more difficult to design the overall system

◦ Actions of intelligent components frustrate system goals

◦ e.g., pilot actions on AF 447

• Overall system should become adaptive or autonomic

Using AI and machine learning

John Rushby, SR I Emergent Misbehavior 14



Summary

• Reductionist approaches to system design and understanding

may no longer be suitable

◦ Systems built from incompletely understood components,

and other systems

◦ System goals far removed from component functions

• Widespread emergent misbehavior seems inevitable

◦ In some cases, can attempt to reduce emergence and

restore validity of reductionism

◦ In other cases, should embrace emergence and aim for

adaptation and resilience

• In no cases will it be business as usual

• Datum: safety critical code size in aircraft and spacecraft

doubles every two years (Holzmann)

John Rushby, SR I Emergent Misbehavior 15


