Computing with Stochastic Processors:
Embracing Errors in Architecture and Design of

Processors and Applications

Asstnt Prof Rakesh Kumar
Department of Electrical and Computer Engineering

University of Illinois, Urbana-Champaign

Maeasurod Maasurid Measured Fmax correlation to VDD noise
= Y pay v pav

m

-] =
ud
i
L

i i

i El.-[: ;5 — Car= 0ide)
> 5 GHz g&a +$$
O 40 20 30 40 S50 &0 TFO EO ;@mmmmmmm
Core D Cyclet
Lmm) 250 180 130 90 65 45
VimV) 450 400 330 300 280 200
o-Vt(mV) 21 23 27 28 30 32
o-VUVt 47% 58% 82% 93% 10.7% 16% L) iy

Infrastructional
core

P
&/

—o—
Non-determinism * - '

Yield (for a glven frequency/ power target) ¢ ‘

swarm

Energy Cost (for a given yield) 2

Status quo cannot continue: - \\
Need to find a solution to the A : Monle
non-determinism problem to

A “buck-a-billion” in 2020 micro-watt computmg
limit power devices; costs of non-determinism unacceptable for
k emerging applications

a I
Non-determinism is NOT the Problem, It is

How Computer System Designers Treat it

Software expects hardware Hardware ALWAYS designed for
to behave ﬂawlessly in spite correctness (under worst-case or
of non-determinism nominal conditions); an attempt to

meet the conventional software
mindset at all cost

Software Virtual Memory
In-order
Conservative / /

Out-of- order _ OVerdesigned <—— Multi-core

Hardware

Pipeline d Non-Deterministic Special—purpose
Components

There would be no energy cost of non-determinism if non-determinism can be exposed

directly to the software under nominal conditions as opposed to eliminating it or hiding it.

s
Research Vision: Computing with

Stochastic Processors

e Rethink the Correctness Contract between Hardware and Software

Software redesigned to

Stochastic

Alications

¢ tolerate hardware errors at

rate E_ 2 under nominal

conditions
E_1,E_2 configured
using software/hardware
techniques to minimize _ Hardware
system power Stochastic designed/ architected
Processor from the ground up to

allow errorsatrate E_1

Non-Deterministic

under nominal
Components conditions

The goal of our research is to explore approaches to architect and
design stochastic processors and applications.

- /

Stochastic

Alications

Stochastic

Processor
Non-Deterministic
K Components /

E_1 = Timing Error Rate
=Fraction of cycles during which at least
one latch/FF latches an incorrect value
=Fraction of cycles during which the output of at least one timing path
that is super-critical (i.e., has negative slack) toggles due to a change in the input

/

Power

Hardware Design Goal

Stochastic

Processor

Non-Deterministic
K Components /

<< Power

Conventional
Processor (VOS

Non-Deterministic
K Components /

Using Conventional Processors for Non-
zero Error Rate Operation

e Conventional processors have a timing slack wall

A
Number /

of
Timing
Paths

!

-

Slack wall

Slack

Courtesy: Northwestern

»

1IN
£ 1z
?1 [LELN
=
HLE
% A
f i S
0

= = = = &

885888885235 %

slack valuegins)

™

e

Error Rate (%)

Errors/Time
2

Module 1OV | 09V | 08V | 07V | 0.6V | 05V
Isu_detl 0.00 | 023 B.60 | 2946 | 45.13 | 5490
Isu_getll 0.00 5.94 1085 | 1699 | 1656 | 37.53
Isu_sth_ctl 0.00 | 0.08 0.65 519 | 11.79 | 22.38
Sparc_exu_div 0.00 0.15 0.23 0.35 0.49 1.10
spare_exu_ecl 0.00 3131 1097 | 87.08 | 8893 [73.03
sparc_ifu_dec | 000 | 008 | 087 | 7.09 | 1522 | 2048
sparc_ifi_errdp | 000 | 000 | 000 | 000 | 000 | 921
sparc_ifu_fel 0.00 | 1056 | 2225 | 50.04 | 5506 | 56.95
spu_ctl 0.00 0.00 0.00 1.30 2.96 35.53
th_mmu_ctl 0.00 | 001 0.02 0.06 0.14 0.19

-

4
108

Using Conventional Processors for Non-
zero Error Rate Operation

e Conventional processors have slack wall

™

massive errors

4 Supply Voltage b

Q Aging degradationt

(HPCA2010, ASPDAC2010)

Too many errors produced if non-determinism is exposed
b b —
(usmg VOS, for example) not much scallng possible before E_1 reached

< G Process Variation f >

\d
‘0

< Q Clock Frequency t >\?

w
|]
-
L}
-
LJ
-
"
LJ
n
L)
L4
&
L
L4
.
e

................EE::..............l'l" 5
ZETO e1TOrS

/

-

Using Conventional Processors for Non-
zero Error Rate Operation

e Conventional processor have slack wall

e Conventional processors have inherently higher power/area as they are

optimized for correct operation
N

x Worst-case design

Power x i
Better-than-worst-case de51gn

x """"""""" Tdealized Better-than-worst-case design

x Stochastic Processor design?

7

Performance

Power difference between a conventional processor and a

stochastic processor will become more pronounced as leakage Increases

™

/

™
Using Conventional Processors for Non-

zero Error Rate Operation

e Conventional processor have slack wall

e Conventional processors have inherently higher power/area as they are

optimized for correct operation

* Conventional processors are workload-agnostic (STA, SSTA);

therefore, heavily overdesigned for most workloads (false paths, etc)

Area / Timing Hardware

Constraints Design

SP&R Flow

- Design and Architecture of Stochastic A

Processors: Key Observation

® Error rate depends on path slack and activity

® Slack distribution determines which paths cause errors; activity

determines the error rate contribution of the paths

:# paths Zero sll<ack after

e 7 r(\)/gl?a?ge scaling

timing slack
>

negative
slack paths

1 yoltage scaling

Design, Architecture, and Compilation Approaches to Manipulate
Slack and Activity Distribution
& to Minimize system power when an Error Resilience Mechanism is Available/

" Soft Processor Design for Voltage

Overscaling

-

Error rate

\ 4

Power
consumption

Maximum
error rate

Error Rate

\\
-
= -
-

N

\7mm \‘/'mm (lower voltag'e)

(HPCA2010, ASPDAC2010, DAC2010)

" Soft Processor Design: Power-aware Slack A
Redistribution for Stochastic Processors

>
>

‘wall’ of slack ' ‘gradual Slope’
: slack

Number of paths

E ' E
0 | \ Timing slack O i
Zero slack after voltage scaling
InsIBREARESIRITOL RERE)C (PSh PABR A ot
error’s R IHEAR AR RRe SRRP Rt RAL RS small

. De-optimize rarely exercised paths.

_ Both gradual failure and low power can be achieved. Y,

Slack Re-distribution Example
NH(ESHIVG Slack

E B
FF FF
N%@mtlve Slack

A Error Rate

TG(P1) =025 Slack(Py) = @ 0.0
TG(P,) =0.01 Slack(P) =01 -0.1

Much smaller error rate at a given vO c =>

much smaller voltage for a given error rate

(Processor Error Rate and Power A

0.16

‘ ?@(—Q-Conventional
/ P&R
0.12 4 /

w , 4,

£ 508 » =@ Tight P&R

m , []

|

)

£ 0.04 / /

w

' X == Slack Slack Distributions
¢ Optimizer .
0.00 X7 indeed causes graceful

0.95 0.90Voltage (\8-85 0.80 degradation in

_.85 reliability; Designs
—+-Conventional | __

260 rar o l'with comparable error
: L]
Q5 rates have much hlgher
2 |
€0 —=-TightP&R | power/area overheads.
:
£ 6.5
o
= 6.0 = Slack
q;, Optimizer
S 5.5
o

0.95 0.90 0.85 0.80
Voltage (V)

/
\

: Reliability/Power Tradeoff A

= ¢ = Conventional
P&R

== Tight P&R

Power Consumption (W)

=& Slack Optimizer

6.5

0 1 2 3 4 Error Rate (%)

Slack-optimized design enjoys continued power reduction
as error rate increases; first methodology that produces
_ designs that allow voltage/reliability tradeoffs. -

/Error Rate Sensitivity to Architecture

® Changes to microarchitecture affect slack and activity distribution of

pI‘OCGSSOI’

® Error rate behavior can change significantly with change to

architecture
0 5 I r i r
- / =2l 932 req128 Isq2
04
9 / =8=2alud 32 regd4 Isq16
503 w
S 17 B2l 16 reg128 Isq32
1]
0.1 = 2lu1_q16_regh4 Isq16

o
o

100 09 09 08 080 0.5 Voltage

(DATE 2010; DAC 2010; CASES2011)

4 N

Reshaping the Slack Distribution:
Register File Resizing

Allps)go% Core Path Slack Distribution |+16reg —o—32reg —=—64reg | Alpha Core Varying Register File Size —4—23req —®—61reg
1.1E+00
14000 N 1.0E+00
12000 S, 9.0E-01
10000 % 8.0E-01 A
5 8000 S N 7.0E-01 \
6000 A ﬂ 2 6.0E-01
I\ h 4 [l £ 50E-01 ~
4000 A &4 5.0E- \
oo WANAS 4.0E-01 <~
A 3.0E-01 !
0 T T
) 25 3 35 4 a5 5 55 6 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
Slack (ns) Error Rate
Alpha Core with Razor —e— 16reg —=— 32reg = = - Error Free Min Energy
0.045 ¢
0.040
= 0.035
>
© 0.030
)
{0 0.025
0.020
0.015 T T T T T
1 0.95 0.9 0.85 0.8 0.75 0.7

Voltage

A smaller register file reduces regularity; increases efficiency (>21%) at non-zero error
K rates; With a large register file energy saving <2%

Design Space Exploration

=~ ic8 dcl6 alul g32 regl28 Isq64 - ic8 dc8 alul 932 regl28 Isq32 =& ic8_dc4 alul gl16 reg64 Isq32
2.0
1.9
1.8
£ 17
>
S ! —0—
g 1594 e ——
I I
13 1 | ‘
LOW | MID HIGH
— e —
0 2 4 6 8 10 12 14 16
Error rate (%)

-

As error rate increases, smaller regular structures and less complex

logic become more efficient

/

-

Design Space Exploration

ic8_dcl6_alul _g32_regl28 Isq64—m—ic8_dc4 alul_ql6_reg64 Isq32
2.6 - ===Error Free Min Energy

0.80 0.75 0.70

1.00 0.95 0.90

0.85
Voltage (V)

A resilience-optimized architecture achieves significantly higher
(>25%) efficiency than correctness-optimized architecture

/

Stochastic

Alications

Stochastic

Processor

Non-Deterministic
K Components /

An Optimization-based Approach to

Application Robustification
Po

Conventional

Application

o Primary Issues

* How to construct f(x) when we don’t know x*?

* What is the most efficient solver for f(x)?

g Example Formulation:

Sorting

® input: uis unsorted list of n elements

e What is sorting?
° Finding the correct relative position of each element in the unsorted
list. [Permutation matrix]

® Example
u=[52,8]"

X: 3x3 Permutation Matrix

Permutation (X) to reverse Permutation (X) to sort
‘0 O 1|5 [8] 0 1 Oof5] [2]
Xu=|0 1 0|2|=|2 Xu=|1 0 0|2|=|5
1 0 O8] |5) 0 0 1|8] |[8)

-

Example : Robustified Sorting

® Post condition:
® output list contains elements of u sorted in ascending order.

® Variational expression:

® Xu ,where

X: is permutation matrix of size n x n

® Problem Formulation

® The list which arranges the elements of list in ascending order will

minimize the product -v(Xu)

v=[l..n]' min —v' Xu

XERHXI’]

s

-

Example : Robustified Sorting

® As unconstrained problem:

min —v' Xu

XeRnxn

st. X; =0,) X; <1, Y X; <1
| J

Penalty Function

/

Scope of Transformations

" SOET min | Ax—b2~ xT AT Ax — 2b" Ax
(as Quadratic Program)
* SORT min—v Xu |
weR MM (as Linear Program)
e GM:

min —<W, X >

RN (as Linear Program)

e Large class of problems can be solved as LP.
— Any polynomial algo can be emulated in polynomial time

* Applicable for harder problems as well! (NP, ILP,
discrete/combinatorial optimizations)

ldentifying the Best Solver

® (Gradient Descent shown to be robust under errors

® For zero mean noisy gradient calculations
e With diminishing step sizes

o Applying Gradient Descent to an unconstrained problem:

Xi+1 — Xi -|-0!,O
p=—Vi(X)

P

t(x)

Methodology

® Faults injected into the FPU of Leon3

soft core run on Altera Stratix Il

EP25190 FPGA

® other modules assumed to be fault free

e Time between and Voltage vs Error Rate of FPU
i __ 014
actual bit faults S 012 |
. » 0.1
approximated from 5 008 |\
2 0.06 {
random numbers © 004 -\

0.02 o

0.7 0.8 0.9 1 1.1 1.2
Supply Voltage (V) /

generated from LFSR

Error Ra
o

Sorting (size=10) using
Gradient Descent

100 R._. - » n
80

g \ ——Baseline

E 60

g 40 -=-5SGD, LS

O iter=10k

§ \- ()
20 ~— -=-SGD, SQS

0 (iter=10k)
0 20 40 60

Fault Rate (% of FLOPs)

100% Accuracy with Sort using SGD even in face of large

error rates. Note that traditional implementations of sort not

considered error tolerant. /

Graph Matching(5x6) using
Gradient Descent (10K lterations)

100 T@K K—K K X
80

9
o x -#-Baseline
5 60
A
@ 40
S \\ >€SGD, ALL
@ 20 (iter=10k)
o \\’\‘ .
0 20 40 60

Fault Rate (% of FLOPs)

100% Accuracy for arbitrary inputs even for large fault rates

: A Discussion of Runtime and

Energy

o A single iteration of an optimization formulation may have
higher complexity than the baseline for some apps (e.g. sort).

e Robustification still useful when the computational substrate is

inherently stochastic.

® For other applications, a single optimization iteration may be
faster compared to the baseline (e.g. LSQ, graph matching).
* Robustification useful for such applications for saving energy.
(> 10X savings for relaxed accuracy targets for LSQ)

® Energy savings increase when parallelism of the optimization

version is exploited

Example: 8x-20x energy savings for graph matching with an accelerator

architecture. [SASP2011]

Current Work

e Automated robustification.

o Sacrificing Generality for Efficiency

°LE.yg Robustifying sparse linear algebra through approximate

algorithmic correction

Summary and Conclusions

® Too much cost for computing with guarantees

® Processors need to be designed and architected from the ground
up to manage the number and nature of errors (stochastic

processors) to deal with the non-determinism problem for late-

CMOS / post-CMOS technologies

e Conventional design and architecture approaches optimize for

correct operation; inadequate when errors are allowed

° Proposed Stochasticity—aware Architecture / Design

Methodologies present significant power savings

© Appiication Robustification: A rich area of research with significant

potential for robustness . Efficiency improvements.

