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Energy Cost (for a given yield) 2

Status quo cannot continue: - \\
Need to find a solution to the A : Monle
non-determinism problem to

A “buck-a-billion” in 2020 micro-watt computmg
limit power devices; costs of non-determinism unacceptable for
k emerging applications
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Non-determinism is NOT the Problem, It is

How Computer System Designers Treat it

Software expects hardware Hardware ALWAYS designed for
to behave ﬂawlessly in spite correctness (under worst-case or
of non-determinism nominal conditions); an attempt to

meet the conventional software
mindset at all cost

Software Virtual Memory
In-order
Conservative / /

Out-of- order _ OVerdesigned <—— Multi-core

Hardware

Pipeline d Non-Deterministic Special—purpose
Components

There would be no energy cost of non-determinism if non-determinism can be exposed

directly to the software under nominal conditions as opposed to eliminating it or hiding it.
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Research Vision: Computing with

Stochastic Processors

e Rethink the Correctness Contract between Hardware and Software

Software redesigned to

Stochastic

Alications

¢ tolerate hardware errors at

rate E_ 2 under nominal

conditions
E_1,E_2 configured
using software/hardware
techniques to minimize _ Hardware
system power Stochastic designed/ architected
Processor from the ground up to

allow errorsatrate E_1

Non-Deterministic

under nominal
Components conditions

The goal of our research is to explore approaches to architect and
design stochastic processors and applications.
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Stochastic

Alications

Stochastic

Processor
Non-Deterministic
K Components /

E_1 = Timing Error Rate
=Fraction of cycles during which at least
one latch/FF latches an incorrect value
=Fraction of cycles during which the output of at least one timing path
that is super-critical (i.e., has negative slack) toggles due to a change in the input
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Power

Hardware Design Goal

Stochastic

Processor

Non-Deterministic
K Components /

<< Power

Conventional
Processor (VOS

Non-Deterministic
K Components /




Using Conventional Processors for Non-
zero Error Rate Operation

e Conventional processors have a timing slack wall

A
Number /

of
Timing
Paths

!

-

Slack wall
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Error Rate (%)

Errors/Time
2

Module 1OV | 09V | 08V | 07V | 0.6V | 05V
Isu_detl 0.00 | 023 B.60 | 2946 | 45.13 | 5490
Isu_getll 0.00 5.94 1085 | 1699 | 1656 | 37.53
Isu_sth_ctl 0.00 | 0.08 0.65 519 | 11.79 | 22.38
Sparc_exu_div 0.00 0.15 0.23 0.35 0.49 1.10
spare_exu_ecl 0.00 3131 1097 | 87.08 | 8893 [ 73.03
sparc_ifu_dec | 000 | 008 | 087 | 7.09 | 1522 | 2048
sparc_ifi_errdp | 000 | 000 | 000 | 000 | 000 | 921
sparc_ifu_fel 0.00 | 1056 | 2225 | 50.04 | 5506 | 56.95
spu_ctl 0.00 0.00 0.00 1.30 2.96 35.53
th_mmu_ctl 0.00 | 001 0.02 0.06 0.14 0.19
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Using Conventional Processors for Non-
zero Error Rate Operation

e Conventional processors have slack wall

™

massive errors

4 Supply Voltage b

Q Aging degradationt

(HPCA2010, ASPDAC2010)

Too many errors produced if non-determinism is exposed
b b —
(usmg VOS, for example) not much scallng possible before E_1 reached

< G Process Variation f >

\d
‘0

< Q Clock Frequency t >\?

w
| ]
-
L}
-
LJ
-
"
LJ
n
L)
L4
&
L
L4
.
e

................EE::..............l'l" 5
ZETO e1TOrS

/




-

Using Conventional Processors for Non-
zero Error Rate Operation

e Conventional processor have slack wall

e Conventional processors have inherently higher power/area as they are

optimized for correct operation
N

x Worst-case design

Power x i
Better-than-worst-case de51gn

x """"""""" Tdealized Better-than-worst-case design

x Stochastic Processor design?

7

Performance

Power difference between a conventional processor and a

stochastic processor will become more pronounced as leakage Increases

™

/




™
Using Conventional Processors for Non-

zero Error Rate Operation

e Conventional processor have slack wall

e Conventional processors have inherently higher power/area as they are

optimized for correct operation

* Conventional processors are workload-agnostic (STA, SSTA);

therefore, heavily overdesigned for most workloads (false paths, etc)

Area / Timing Hardware

Constraints Design

SP&R Flow




- Design and Architecture of Stochastic A

Processors: Key Observation

® Error rate depends on path slack and activity

® Slack distribution determines which paths cause errors; activity

determines the error rate contribution of the paths

:# paths Zero sll<ack after

e 7 r(\)/gl?a?ge scaling

timing slack
>

negative
slack paths

1 yoltage scaling

Design, Architecture, and Compilation Approaches to Manipulate
Slack and Activity Distribution
& to Minimize system power when an Error Resilience Mechanism is Available/




" Soft Processor Design for Voltage

Overscaling

-

Error rate

\ 4

Power
consumption

Maximum
error rate

Error Rate
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\7mm \‘/'mm (lower voltag'e)

(HPCA2010, ASPDAC2010, DAC2010)




" Soft Processor Design: Power-aware Slack A
Redistribution for Stochastic Processors

>
>

‘wall’ of slack ' ‘gradual Slope’
: slack

Number of paths

E ' E
0 | \ Timing slack O i
Zero slack after voltage scaling
InsIBREARESIRITOL RERE)C (PSh PABR A ot
error’s R IHEAR AR RRe SRRP Rt RAL RS small

. De-optimize rarely exercised paths.

_ Both gradual failure and low power can be achieved. Y,




Slack Re-distribution Example
NH(ESHIVG Slack

E B
FF FF
N%@mtlve Slack

A Error Rate

TG(P1) =025  Slack(Py) = @ 0.0
TG(P,) =0.01  Slack(P) =01 -0.1

Much smaller error rate at a given vO c =>

much smaller voltage for a given error rate




( Processor Error Rate and Power A
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: Reliability/Power Tradeoff A

= ¢ = Conventional
P&R

== Tight P&R

Power Consumption (W)

=& Slack Optimizer

6.5

0 1 2 3 4 Error Rate (%)

Slack-optimized design enjoys continued power reduction
as error rate increases; first methodology that produces
\_ designs that allow voltage/reliability tradeoffs. -




/Error Rate Sensitivity to Architecture

® Changes to microarchitecture affect slack and activity distribution of

pI‘OCGSSOI’

® Error rate behavior can change significantly with change to

architecture
0 5 I r i r
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Reshaping the Slack Distribution:
Register File Resizing
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A smaller register file reduces regularity; increases efficiency (>21%) at non-zero error
K rates; With a large register file energy saving <2%




Design Space Exploration
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As error rate increases, smaller regular structures and less complex

logic become more efficient
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Design Space Exploration

ic8_dcl6_alul _g32_regl28 Isq64—m—ic8_dc4 alul_ql6_reg64 Isq32
2.6 - ===Error Free Min Energy
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A resilience-optimized architecture achieves significantly higher
(>25%) efficiency than correctness-optimized architecture
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Stochastic

Alications

Stochastic

Processor

Non-Deterministic
K Components /




An Optimization-based Approach to

Application Robustification
Po

Conventional

Application

o Primary Issues

* How to construct f(x) when we don’t know x*?

* What is the most efficient solver for f(x)?




g Example Formulation:

Sorting

® input: uis unsorted list of n elements

e What is sorting?
° Finding the correct relative position of each element in the unsorted
list. [Permutation matrix]

® Example
u=[52,8]"

X: 3x3 Permutation Matrix

Permutation (X) to reverse Permutation (X) to sort
‘0 O 1|5 [8] 0 1 Oof5] [2]
Xu=|0 1 0|2|=|2 Xu=|1 0 0|2|=|5
1 0 O8] |5) 0 0 1|8] |[8)

-




Example : Robustified Sorting

® Post condition:
® output list contains elements of u sorted in ascending order.

® Variational expression:

® Xu ,where

X: is permutation matrix of size n x n

® Problem Formulation

® The list which arranges the elements of list in ascending order will

minimize the product -v(Xu)

v=[l..n]' min —v' Xu

XERHXI’]
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Example : Robustified Sorting

® As unconstrained problem:

min —v' Xu

XeRnxn

st. X; =0, ) X; <1, Y X; <1
| J

Penalty Function

/




Scope of Transformations

" SOET min | Ax—b2~ xT AT Ax — 2b" Ax
(as Quadratic Program)
* SORT min—v Xu |
weR MM ( as Linear Program)
e GM:

min —<W, X >

RN ( as Linear Program)

e Large class of problems can be solved as LP.
— Any polynomial algo can be emulated in polynomial time

* Applicable for harder problems as well! (NP, ILP,
discrete/combinatorial optimizations)




ldentifying the Best Solver

® (Gradient Descent shown to be robust under errors

® For zero mean noisy gradient calculations
e With diminishing step sizes

o Applying Gradient Descent to an unconstrained problem:

Xi+1 — Xi -|-0!,O
p=—Vi(X)

P

t(x)




Methodology

® Faults injected into the FPU of Leon3

soft core run on Altera Stratix Il

EP25190 FPGA

® other modules assumed to be fault free

e Time between and Voltage vs Error Rate of FPU
i __ 014
actual bit faults S 012 |
. » 0.1
approximated from 5 008 |\
2 0.06 {
random numbers © 004 -\

0.02 o

0.7 0.8 0.9 1 1.1 1.2
Supply Voltage (V) /

generated from LFSR

Error Ra
o




Sorting (size=10) using
Gradient Descent

100 R._. - » n
80

g \ ——Baseline

E 60

g 40 -=-5SGD, LS

O iter=10k

§ \- ( )
20 ~— -=-SGD, SQS

0 (iter=10k)
0 20 40 60

Fault Rate (% of FLOPs)

100% Accuracy with Sort using SGD even in face of large

error rates. Note that traditional implementations of sort not

considered error tolerant. /




Graph Matching(5x6) using
Gradient Descent (10K lterations)

100 T@K K—K K X
80

9
o x -#-Baseline
5 60
A
@ 40
S \\ >€SGD, ALL
@ 20 (iter=10k)
o \\’\‘ .
0 20 40 60

Fault Rate (% of FLOPs)

100% Accuracy for arbitrary inputs even for large fault rates




: A Discussion of Runtime and

Energy

o A single iteration of an optimization formulation may have
higher complexity than the baseline for some apps (e.g. sort).

e Robustification still useful when the computational substrate is

inherently stochastic.

®  For other applications, a single optimization iteration may be
faster compared to the baseline (e.g. LSQ, graph matching).
* Robustification useful for such applications for saving energy.
(> 10X savings for relaxed accuracy targets for LSQ)

®  Energy savings increase when parallelism of the optimization

version is exploited

Example: 8x-20x energy savings for graph matching with an accelerator

architecture. [SASP2011]




Current Work

e Automated robustification.

o Sacrificing Generality for Efficiency

°LE.yg Robustifying sparse linear algebra through approximate

algorithmic correction




Summary and Conclusions

® Too much cost for computing with guarantees

® Processors need to be designed and architected from the ground
up to manage the number and nature of errors (stochastic

processors) to deal with the non-determinism problem for late-

CMOS / post-CMOS technologies

e Conventional design and architecture approaches optimize for

correct operation; inadequate when errors are allowed

° Proposed Stochasticity—aware Architecture / Design

Methodologies present significant power savings

© Appiication Robustification: A rich area of research with significant

potential for robustness . Efficiency improvements.




