
Asstnt Prof Rakesh Kumar

Department of Electrical and Computer Engineering

University of Illinois, Urbana-Champaign

Computing with Stochastic Processors:

Embracing Errors in Architecture and Design of

Processors and Applications

Non-determinism

Yield (for a given frequency/power target)

Energy Cost (for a given yield)

A “buck-a-billion” in 2020; micro-watt computing

devices; costs of non-determinism unacceptable for

emerging applications

Status quo cannot continue:

Need to find a solution to the

non-determinism problem to

limit power

Non-determinism is NOT the Problem, It is

How Computer System Designers Treat it

Conservative /

Overdesigned

Hardware

Conservative

Software
In-order

Out-of-order

Pipelined

Multi-core

Special-purpose

Virtual Memory

Non-Deterministic

Components

Software expects hardware

to behave flawlessly in spite

of non-determinism

Hardware ALWAYS designed for

correctness (under worst-case or

nominal conditions); an attempt to

meet the conventional software

mindset at all cost

There would be no energy cost of non-determinism if non-determinism can be exposed

directly to the software under nominal conditions as opposed to eliminating it or hiding it.

HW-based Error Resilience

Research Vision: Computing with

Stochastic Processors

 Rethink the Correctness Contract between Hardware and Software

Stochastic

Processor

Stochastic

Applications

Non-Deterministic

Components

E_1, E_2 configured

using software/hardware

techniques to minimize

system power

Hardware

designed/architected

from the ground up to

allow errors at rate E_1

under nominal

conditions

Software redesigned to

tolerate hardware errors at

rate E_2 under nominal

conditions

The goal of our research is to explore approaches to architect and

design stochastic processors and applications.

E_1

E_2

HW-based Error Resilience

Stochastic

Processor

Stochastic

Applications

Non-Deterministic

Components

E_1

E_2

E_1 = Timing Error Rate

=Fraction of cycles during which at least

one latch/FF latches an incorrect value

=Fraction of cycles during which the output of at least one timing path

that is super-critical (i.e., has negative slack) toggles due to a change in the input

HW-based Error Resilience

Stochastic

Processor

Non-Deterministic

Components

E_1

E_2

Power

HW-based Error Resilience

Conventional

Processor (VOS)

Non-Deterministic

Components

E_1

E_2

Power <<

Hardware Design Goal

Using Conventional Processors for Non-

zero Error Rate Operation
 Conventional processors have a timing slack wall

Courtesy: Northwestern

Using Conventional Processors for Non-

zero Error Rate Operation
 Conventional processors have slack wall

Too many errors produced if non-determinism is exposed

(using VOS, for example), not much scaling possible before E_1 reached

(HPCA2010, ASPDAC2010)

 Conventional processor have slack wall

 Conventional processors have inherently higher power/area as they are

optimized for correct operation

Worst-case design

Better-than-worst-case design

Idealized Better-than-worst-case design

Performance

Power

Stochastic Processor design?

Using Conventional Processors for Non-

zero Error Rate Operation

Power difference between a conventional processor and a

stochastic processor will become more pronounced as leakage increases

Using Conventional Processors for Non-

zero Error Rate Operation
 Conventional processor have slack wall

 Conventional processors have inherently higher power/area as they are

optimized for correct operation

 Conventional processors are workload-agnostic (STA, SSTA);

therefore, heavily overdesigned for most workloads (false paths, etc)

SP&R Flow

Area / Timing

Constraints

Workload-specific

Information

(e.g., activity)

Hardware

Design

paths

timing slack

zero slack
paths

timing slack

zero slack after

voltage scaling

voltage scaling

negative

slack paths

Design and Architecture of Stochastic

Processors: Key Observation
 Error rate depends on path slack and activity

 Slack distribution determines which paths cause errors; activity

determines the error rate contribution of the paths

Design, Architecture, and Compilation Approaches to Manipulate

Slack and Activity Distribution

to Minimize system power when an Error Resilience Mechanism is Available

Soft Processor Design for Voltage

Overscaling

E
rr

o
r

R
a

te

(lower voltage)

Maximum
error rate

Power
consumption

P
o

w
e

r

Error rate

Vmin

Pmin E
rr

o
r

R
a

te

(lower voltage)

Maximum
error rate

V’min

P’min

(HPCA2010, ASPDAC2010, DAC2010)

Timing slack0

Zero slack after voltage scaling

0

‘wall’ of slack ‘gradual slope’
slack

N
um

be
r

of
 p

at
hs

• De-optimize rarely exercised paths.

Insight: Frequently-exercised paths contribute most

errors, but the number of such paths in a design is small

Both gradual failure and low power can be achieved.

• Optimize frequently exercised critical paths.

Soft Processor Design: Power-aware Slack

Redistribution for Stochastic Processors

Increase slack of (near) critical paths without

consuming much extra power

A B

FF FF

P1

P2

TG(P1) = 0.25

TG(P2) = 0.01

Slack(P1) = -0.2

Slack(P2) = 0.1

Positive SlackNegative Slack

Slack Re-distribution Example

0.0

-0.1

Negative SlackPositive Slack

Error Rate = 1%Error Rate = 25%

Much smaller error rate at a given voltage =>

much smaller voltage for a given error rate

Processor Error Rate and Power

Slack Distributions

indeed causes graceful

degradation in

reliability; Designs

with comparable error

rates have much higher

power/area overheads.

0.00

0.04

0.08

0.12

0.16

0.800.850.900.95

E
r
r
o
r
 R

a
te

Voltage (V)

Conventional

P&R

Tight P&R

Slack

Optimizer

5.5

6.0

6.5

7.0

7.5

8.0

8.5

0.800.850.900.95
Voltage (V)

Conventional

P&R

Tight P&R

Slack

Optimizer

P
o

w
e
r
 C

o
n

s
u

m
p

ti
o

n
 (

W
)

Reliability/Power Tradeoff

Slack-optimized design enjoys continued power reduction

as error rate increases; first methodology that produces

designs that allow voltage/reliability tradeoffs.

6.5

7.0

7.5

8.0

0 1 2 3 4 Error Rate (%)

Conventional

P&R

Tight P&R

Slack OptimizerP
o
w

e
r
 C

o
n

su
m

p
ti

o
n

 (
W

)

Error Rate Sensitivity to Architecture

 Changes to microarchitecture affect slack and activity distribution of

processor

 Error rate behavior can change significantly with change to

architecture

(DATE 2010; DAC 2010; CASES2011)

Reshaping the Slack Distribution:

Register File Resizing
Alpha Core Path Slack Distribution

0

2000

4000

6000

8000

10000

12000

14000

16000

2 2.5 3 3.5 4 4.5 5 5.5 6

Slack (ns)

P
a

th
s

 .

16reg 32reg 64reg Alpha Core Varying Register File Size

3.0E-01

4.0E-01

5.0E-01

6.0E-01

7.0E-01

8.0E-01

9.0E-01

1.0E+00

1.1E+00

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Error Rate

E
n

e
rg

y
*D

e
la

y
^

2

.

23reg 61reg

Alpha Core with Razor

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.70.750.80.850.90.951
Voltage

E
n

e
rg

y
 (

J
)

 .

16reg 32reg Error Free Min Energy

A smaller register file reduces regularity; increases efficiency (>21%) at non-zero error

rates; With a large register file energy saving <2%

Design Space Exploration

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

0 2 4 6 8 10 12 14 16

Error rate (%)

E
n

e
rg

y
 (

W
/I
P

C
)

.

ic8_dc16_alu1_q32_reg128_lsq64 ic8_dc8_alu1_q32_reg128_lsq32 ic8_dc4_alu1_q16_reg64_lsq32

MID HIGHLOW

As error rate increases, smaller regular structures and less complex

logic become more efficient

Design Space Exploration

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

0.700.750.800.850.900.951.00

E
n

e
rg

y
(W

/I
P

C
)

 .

Voltage (V)

ic8_dc16_alu1_q32_reg128_lsq64 ic8_dc4_alu1_q16_reg64_lsq32

Error Free Min Energy

A resilience-optimized architecture achieves significantly higher

(>25%) efficiency than correctness-optimized architecture

HW-based Error Resilience

Stochastic

Processor

Stochastic

Applications

Non-Deterministic

Components

E_1

E_2

An Optimization-based Approach to

Application Robustification

f(x)

ρo

ρ1

x*

Conventional

Application

Example Formulation:

Sorting

 input: u is unsorted list of n elements

 What is sorting?

 Finding the correct relative position of each element in the unsorted

list. [Permutation matrix]

 Example

 u = [5,2,8]T

 X: 3x3 Permutation Matrix

5

2

8

8

2

5

001

010

100

Xu

8

5

2

8

2

5

100

001

010

Xu

Permutation (X) to reverse Permutation (X) to sort

Example : Robustified Sorting

 Post condition:

 output list contains elements of u sorted in ascending order.

 Variational expression:

 Xu ,where

 X: is permutation matrix of size n x n

 Problem Formulation

 The list which arranges the elements of list in ascending order will

minimize the product -v(Xu)

Tnv]....1[XuvT

Rx nxn

min

Example : Robustified Sorting
 As unconstrained problem:

XuvT

Rx nxn

min

1,1,0..
j

ij

i

ijij XXXts

i

ij

jj

ij

iij

ij

T XXXXuv 222]1[]1[][

Penalty Function

Scope of Transformations
• SOE :

(as Quadratic Program)

• SORT:
(as Linear Program)

• GM:
(as Linear Program)

• Large class of problems can be solved as LP.
– Any polynomial algo can be emulated in polynomial time

• Applicable for harder problems as well! (NP, ILP,
discrete/combinatorial optimizations)

AxbAxAxbAx TTT 2||||min 2

XuvT

Rx nxn

min

XW
nxnRx

,min

Identifying the Best Solver

 Gradient Descent shown to be robust under errors

 For zero mean noisy gradient calculations

 With diminishing step sizes

 Applying Gradient Descent to an unconstrained problem:

 ii xx 1

)(ixf
f(x)

ρ1

Methodology

 Faults injected into the FPU of Leon3

soft core run on Altera Stratix II

EP2S190 FPGA

 other modules assumed to be fault free

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14

0.7 0.8 0.9 1 1.1 1.2E
rr

o
r

R
a

te
 (

e
rr

o
rs

/O
P

)

Supply Voltage (V)

Voltage vs Error Rate of FPU • Time between and
actual bit faults
approximated from
random numbers
generated from LFSR

Sorting (size=10) using

Gradient Descent

100% Accuracy with Sort using SGD even in face of large

error rates. Note that traditional implementations of sort not

considered error tolerant.

0

20

40

60

80

100

0 20 40 60

Su
cc

e
ss

 R
at

e
 (

%
)

Fault Rate (% of FLOPs)

Baseline

SGD, LS
(iter=10k)

SGD, SQS
(iter=10k)

Graph Matching(5x6) using

Gradient Descent (10k Iterations)

100% Accuracy for arbitrary inputs even for large fault rates

0

20

40

60

80

100

0 20 40 60

Su
cc

e
ss

 R
at

e
 (

%
)

Fault Rate (% of FLOPs)

Baseline

SGD, ALL
(iter=10k)

A Discussion of Runtime and

Energy

 A single iteration of an optimization formulation may have

higher complexity than the baseline for some apps (e.g. sort).

 Robustification still useful when the computational substrate is

inherently stochastic.

 For other applications, a single optimization iteration may be

faster compared to the baseline (e.g. LSQ, graph matching).

 Robustification useful for such applications for saving energy.

(>10X savings for relaxed accuracy targets for LSQ)

 Energy savings increase when parallelism of the optimization

version is exploited

 Example: 8x-20x energy savings for graph matching with an accelerator

architecture. [SASP2011]

Current Work

 Automated robustification.

 Sacrificing Generality for Efficiency

 E.g. Robustifying sparse linear algebra through approximate

algorithmic correction

Summary and Conclusions

 Too much cost for computing with guarantees

 Processors need to be designed and architected from the ground

up to manage the number and nature of errors (stochastic

processors) to deal with the non-determinism problem for late-

CMOS / post-CMOS technologies

 Conventional design and architecture approaches optimize for

correct operation; inadequate when errors are allowed

 Proposed Stochasticity-aware Architecture / Design

Methodologies present significant power savings

 Application Robustification: A rich area of research with significant

potential for robustness . Efficiency improvements.

