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Non-determinism      

Yield (for a given frequency/power target)

Energy Cost (for a given yield)

A “buck-a-billion” in 2020;  micro-watt computing 

devices; costs of non-determinism unacceptable for 

emerging applications

Status quo cannot continue: 

Need to find a solution to the 

non-determinism problem to 

limit power



Non-determinism is NOT the Problem, It is 

How Computer System Designers Treat it

Conservative / 

Overdesigned 

Hardware

Conservative 

Software
In-order

Out-of-order

Pipelined

Multi-core

Special-purpose

Virtual Memory

Non-Deterministic 

Components

Software expects hardware 

to behave flawlessly in spite 

of non-determinism

Hardware ALWAYS designed for 

correctness (under worst-case or 

nominal conditions); an attempt to 

meet the conventional software 

mindset  at all cost

There would be no energy cost of non-determinism if non-determinism can be exposed 

directly to the software under nominal conditions as opposed to eliminating it or hiding it. 



HW-based Error Resilience

Research Vision: Computing with 

Stochastic Processors

 Rethink the Correctness Contract between Hardware and Software 

Stochastic 

Processor

Stochastic 

Applications

Non-Deterministic 

Components

E_1, E_2  configured 

using software/hardware 

techniques to minimize 

system power

Hardware 

designed/architected 

from the ground up to 

allow  errors at rate E_1 

under nominal 

conditions

Software redesigned to 

tolerate  hardware errors at 

rate E_2 under nominal 

conditions

The goal of our research is to explore approaches to architect and 

design stochastic processors and applications.
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HW-based Error Resilience

Stochastic 

Processor

Stochastic 

Applications

Non-Deterministic 

Components

E_1

E_2

E_1 = Timing Error Rate

=Fraction of cycles during which at least 

one latch/FF latches an incorrect value

=Fraction of cycles during which the output of at least one timing path 

that is super-critical (i.e., has negative slack) toggles due to a change in the input  



HW-based Error Resilience

Stochastic 

Processor

Non-Deterministic 

Components

E_1

E_2

Power 

HW-based Error Resilience

Conventional 

Processor (VOS)

Non-Deterministic 

Components

E_1

E_2

Power <<

Hardware Design Goal



Using Conventional Processors for Non-

zero Error Rate Operation
 Conventional processors have a timing slack wall 

Courtesy: Northwestern



Using Conventional Processors for Non-

zero Error Rate Operation
 Conventional processors have slack wall

Too many errors produced if non-determinism is exposed 

(using VOS, for example),  not much scaling possible before E_1 reached

(HPCA2010, ASPDAC2010)



 Conventional processor have slack wall 

 Conventional processors have inherently higher power/area as they are 

optimized for correct operation

Worst-case design

Better-than-worst-case design

Idealized Better-than-worst-case design

Performance

Power

Stochastic Processor design?

Using Conventional Processors for Non-

zero Error Rate Operation

Power difference between a conventional processor and a 

stochastic processor will become more pronounced as leakage increases



Using Conventional Processors for Non-

zero Error Rate Operation
 Conventional processor have slack wall 

 Conventional processors have inherently higher power/area as they are 

optimized for correct operation

 Conventional processors are workload-agnostic (STA, SSTA); 

therefore,  heavily overdesigned for most workloads (false paths, etc)

SP&R Flow

Area / Timing 

Constraints

Workload-specific  

Information

(e.g., activity)

Hardware 

Design



# paths

timing slack 

zero slack
# paths

timing slack 

zero slack after

voltage scaling 

voltage scaling

negative

slack paths

Design and Architecture of Stochastic 

Processors: Key Observation
 Error rate depends on path slack and activity

 Slack distribution determines which paths cause errors; activity 

determines the error rate contribution of the paths

Design, Architecture, and Compilation Approaches to Manipulate 

Slack and Activity Distribution 

to Minimize system power when an Error Resilience Mechanism is Available



Soft Processor Design for Voltage 
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(HPCA2010, ASPDAC2010, DAC2010)



Timing slack0

Zero slack after voltage scaling

0

‘wall’ of slack ‘gradual slope’ 
slack

N
um

be
r 

of
 p

at
hs

• De-optimize rarely exercised paths.

Insight: Frequently-exercised paths  contribute most 

errors, but the number of such paths  in a design is small  

Both gradual failure and low power can be achieved.

• Optimize frequently exercised critical paths.

Soft Processor Design: Power-aware Slack 

Redistribution for Stochastic Processors

Increase slack of (near) critical paths without 

consuming much extra power



A B

FF FF

P1

P2

TG(P1) = 0.25

TG(P2) = 0.01

Slack(P1) = -0.2

Slack(P2) = 0.1

Positive SlackNegative Slack

Slack Re-distribution Example

0.0

-0.1

Negative SlackPositive Slack

Error Rate = 1%Error Rate = 25%

Much smaller error rate at a given voltage => 

much smaller voltage for a given error rate



Processor Error Rate and Power

Slack Distributions 

indeed causes graceful 

degradation in 

reliability; Designs 

with comparable error 

rates have much higher 

power/area overheads.
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Reliability/Power Tradeoff

Slack-optimized design enjoys continued power reduction 

as error rate increases; first methodology that produces 

designs that allow voltage/reliability tradeoffs. 
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Error Rate Sensitivity to Architecture

 Changes to microarchitecture affect slack and activity distribution of 

processor

 Error rate behavior can change significantly with change to 

architecture

(DATE 2010; DAC 2010;  CASES2011)



Reshaping the Slack Distribution: 

Register File Resizing
Alpha Core Path Slack Distribution
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16reg 32reg Error Free Min Energy

A smaller register file reduces regularity; increases efficiency (>21%) at non-zero error 

rates; With a large register file energy saving <2%



Design Space Exploration
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As error rate increases,  smaller regular structures and less complex 

logic become more efficient



Design Space Exploration
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Error Free Min Energy

A resilience-optimized architecture achieves significantly higher 

(>25%)   efficiency than correctness-optimized architecture 
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An Optimization-based Approach to 

Application Robustification

f(x)

ρo

ρ1

x*

Conventional 

Application



Example Formulation: 

Sorting

 input:  u is unsorted list of n elements

 What is sorting?

 Finding the correct relative position of each element in the unsorted 

list.  [Permutation matrix]

 Example

 u = [5,2,8]T

 X:  3x3 Permutation Matrix
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Example : Robustified Sorting

 Post condition:

 output list contains elements  of u sorted in ascending order.

 Variational expression:

 Xu ,where 

 X:  is permutation matrix of size n x n

 Problem Formulation

 The list which arranges the elements of list in ascending order will 

minimize the product -v(Xu)

Tnv ]....1[ XuvT

Rx nxn



min



Example : Robustified Sorting
 As unconstrained problem:

XuvT

Rx nxn
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Scope of Transformations
• SOE :

(as Quadratic Program)

• SORT:
( as Linear Program)

• GM:
( as Linear Program)

• Large class of problems can be solved as LP.  
– Any polynomial algo can be emulated in polynomial time

• Applicable for harder problems as well! (NP, ILP, 
discrete/combinatorial optimizations)

AxbAxAxbAx TTT 2||||min 2 

XuvT

Rx nxn



min
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Identifying the Best Solver

 Gradient Descent shown to be robust under errors

 For zero mean noisy gradient calculations

 With diminishing step sizes

 Applying Gradient Descent to an unconstrained problem:

 ii xx 1

)( ixf
f(x)

ρ1



Methodology

 Faults injected into the FPU of Leon3 

soft core run on Altera Stratix II 

EP2S190 FPGA

 other modules assumed to be fault free
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Sorting (size=10) using

Gradient Descent

100%  Accuracy with Sort using SGD even in face of large 

error rates. Note that traditional implementations of sort not 

considered error tolerant.  
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Graph Matching(5x6) using 

Gradient Descent (10k Iterations)

100% Accuracy for arbitrary inputs even for large fault rates
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A Discussion of Runtime and 

Energy

 A single iteration of an optimization formulation may have 

higher complexity than the baseline for some apps (e.g. sort).   

 Robustification still useful when the computational substrate is 

inherently stochastic.

 For other applications, a single optimization iteration may be 

faster compared to the baseline  (e.g. LSQ,  graph matching).

 Robustification useful for such applications for saving energy. 

(>10X savings for relaxed accuracy targets for LSQ)

 Energy savings increase when parallelism of the optimization 

version is exploited

 Example:   8x-20x energy savings for graph matching with an accelerator 

architecture.   [SASP2011]



Current Work

 Automated robustification.

 Sacrificing Generality for Efficiency

 E.g. Robustifying sparse linear algebra through approximate 

algorithmic correction



Summary and Conclusions

 Too much cost for computing with guarantees

 Processors need to be designed and architected from the ground 

up to manage the number and nature of errors (stochastic 

processors) to deal with the non-determinism problem for late-

CMOS / post-CMOS technologies

 Conventional design and architecture approaches optimize for 

correct operation; inadequate when errors are allowed

 Proposed Stochasticity-aware Architecture / Design 

Methodologies present significant power savings 

 Application Robustification: A rich area of research with significant 

potential for robustness . Efficiency improvements.


