
IFIP WG 10.4 July 3, 2011

1

Fault Injection-basedj
Assessment of Software Mechanisms

for Hardware Fault Tolerance

Johan Karlsson

(with Ruben Alexandersson Daniel Skarin(with Ruben Alexandersson, Daniel Skarin,
Raul Barbosa and Peter Öhman)

Department of Computer Science and Engineering
Chalmers University of Technology

Göteborg, Sweden

Transistor variability and degradation

Shekhar Borkar, Intel Corp:

“As technology scales, variability in transistor
performance will continue to increase, making
transistors less and less reliable. ….

Finding solutions to these challenges will
require a concerted effort on the part of all
the players in a system design.”

Borkar, S.; "Designing reliable systems from unreliable components: the challenges of
transistor variability and degradation," IEEE Micro, December 2005.

2Johan Karlsson IFIP WG 10.4, July 3, 2011

IFIP WG 10.4 July 3, 2011

2

Sources of transistor failures

• Process variations
– Random variations related to lithography, etching, dopant count

– Voltage and temperature variations

• Wear out effects
– NBTI - negative bias temperature instability

– HCI - hot carrier injection

– Gate oxide breakdown

Electromigration– Electromigration

– …

• Ionizing particle radiation
– Cosmic neutrons, alpha particles, muons, pions, …

Johan Karlsson 3IFIP WG 10.4, July 3, 2011

Layered fault tolerance

Catastrophic
f il

Benign
f il

Safe
Sh td System failure modes

Detected
Error

Undetected
Error

Error
corrected

Timing
failure

Bounded
failure

Value
failure

Fail
silent

Fail
signal

Error
corrected

failure failure Shutdown

os
t b

al
an

ci
ng

System failure modes

Software mechanisms2nd line of defense

System mechanisms3rdline of defense

Processor failure modes

Johan Karlsson 4IFIP WG 10.4, July 3, 2011

SW Design
Faults

HW Design
Faults

Physical
Faults

Error
Corrected

Error Error

C

Hardware mechanisms1st line of defense Focus of my talk

IFIP WG 10.4 July 3, 2011

3

Bounded failure vs unbounded failure for
brake-by-wire controller

Benign failure Critical failure

Johan Karlsson 5IFIP WG 10.4, July 3, 2011

Objectives of my talk

• To report on results from fault injection experiments with several p j p
software-based techniques aim at handling transient hardware
faults

• Briefly discuss the use of aspect-oriented programming for
implementing software-based fault tolerance

• Compare error coverage for two implementation techniques:
Manual programming in C and Aspect-oriented programmingp g g p p g g

• Give some insights on how compiler optimizations influence the
error coverage of software-based fault tolerance techniques

Johan Karlsson 6IFIP WG 10.4, July 3, 2011

IFIP WG 10.4 July 3, 2011

4

Research Questions

RQ1 Can software-based mechanisms along with hardware Q g
exceptions enforce fail silent/fail reporting failure
semantics for hardware faults that manifest as single-bit
errors in instruction set architecture (ISA) registers and the
data segment of main memory?

RQ2 How does compiler optimization influence error coverage?

RQ3 H d th i l t ti l i flRQ3 How does the implementation language influence error
coverage?

Johan Karlsson 7IFIP WG 10.4, July 3, 2011

Outline

• Aspect-oriented implementation of error handling mechanismsp p g

• Experimental set-up

– Target system, workload, fault injection tool

• Results for two software-based error handling mechanism

– Execution time overhead

– Error coverage

– Impact of implementation languageImpact of implementation language

• Manual programming in C vs. Aspect-oriented programming

– Impact of compiler optimization

Johan Karlsson 8IFIP WG 10.4, July 3, 2011

IFIP WG 10.4 July 3, 2011

5

Aspect oriented programming
Aspect

Error
handling

source code

Weaving
directives

Target
program

source code

Source code

with error handling

Johan Karlsson 9IFIP WG 10.4, July 3, 2011

Weaver versions

• Expressiveness study (LADC 2007)Expressiveness study (LADC 2007)
– Extension of the AspectC++ weaver

– AspectC++Ext

• Overhead study (EDCC 2010)
– Optimized weaver

– AspectC++Opt

Johan Karlsson 10IFIP WG 10.4, July 3, 2011

IFIP WG 10.4 July 3, 2011

6

Experimental set-up

• Programs executed on a Freescale MPC565 PowerPC
microcontroller

• Nexus-based fault injection
– Injection via debug port

– No need to change target programNo need to change target program

• Experiments conducted with the GOOFI-2 tool

Overview of GOOFI-2
Generic Object-Oriented Fault Injection tool

Johan Karlsson 12IFIP WG 10.4, July 3, 2011

IFIP WG 10.4 July 3, 2011

7

Workload: Brake-by-wire control loop

Johan Karlsson 13IFIP WG 10.4, July 3, 2011

Parts of the program executed during fault injection
experiments encircled in red

Error model

• Single bit-flip errors in CPU registers and the dataSingle bit flip errors in CPU registers and the data
segment of main memory

• Bit-flips are injected in register/memory word just
before the register/memory word is read. This avoids
injection of errors in dead data

• We use pre-injection analysis of the execution trace
to identifying live data items

Note: No guarantee for not injecting errors in data
items that are transitively dead

Johan Karlsson 14IFIP WG 10.4, July 3, 2011

IFIP WG 10.4 July 3, 2011

8

Triple time redundant execution
with forward recovery (TTR-FR)

Purpose: Error masking and error detectionPurpose: Error masking and error detection

• Executes each control loop three times

• Errors masked by majority voting

• Three copies of program state

• Forward recovery: erroneous program state replaced
ith t t f t iwith program state of correct version

• Error signaled if no majority result found

Johan Karlsson 15IFIP WG 10.4, July 3, 2011

Compiler optimization levels

• Low compiler optimizationLow compiler optimization
• GCC … -finline

• High compiler optimization
• GCC … -O3 -fno-strict-aliasing

Johan Karlsson 16IFIP WG 10.4, July 3, 2011

IFIP WG 10.4 July 3, 2011

9

Comparison of overhead for TTR-FR

L il Hi h ilLow compiler
optimization

High compiler
optimization

No. of
instructions

%
overhead

No. of
instructions

%
overhead

Without TTR-FR 635 0% 245 0%

Manual C 2647 317% 943 285%

AspectC++Opt 3428 440% 973 297%

No. of instructions = Number of machine instructions executed in one control loop

Target program: Brake-by-wire controller

Fault tolerance technique: Triple time redundant execution and voting with forward recovery (TTR-FR)

Implementation techniques: Manual programming in C and Aspect-oriented programming using the optimized weaver

Johan Karlsson 17IFIP WG 10.4, July 3, 2011

Error coverage – TTR-FR
(Triple Time Redundant execution with Forward Recovery)

Coverage
Over‐
h d

No Effect
Corrected

by
Detected

by
Detected
by HW

Program
H

Total
C

g
head

y
Software

y
Software

y
Exception

Hang Coverage

Low compiler
optimization

Manual C 317% 34.5% 15.2% 0.9% 45.6% 0.2% 96.4%

AspectC++Opt 440% 33.2% 17.1% 0.5% 45.3% 0.3% 96.5%

High compiler
optimization

Manual C 285% 34.2% 18.4% 1.3% 41.9% 0.1% 95.9%

AspectC++Opt 297% 32.6% 20.7% 1.7% 40.4% 0.2% 95.6%

Error model: Single bit -flips in CPU registers and volatile main memory

No. of injected errors for each program: 10.000

Johan Karlsson 18IFIP WG 10.4, July 3, 2011

IFIP WG 10.4 July 3, 2011

10

Time redundancy and more (TRAM)

Purpose: error detectionPurpose: error detection

• Six checking mechanisms
– Double time redundant execution and result comparison

– Stack pointer and stack frame pointer integrity checks

– Check that writes are made to correct data set

– Counter-based control flow checking

– Check for fake resets

Johan Karlsson 19IFIP WG 10.4, July 3, 2011

Comparison of overhead for TRAM

L il Hi h ilLow compiler
optimization

High compiler
optimization

No. of
instructions

%
overhead

No. of
instructions

%
overhead

Without TRAM 635 0% 245 0%

Manual C 1824 187% 689 181%

AspectC++Opt 2358 271% 746 204%

No. of instructions = Number of machine instructions executed in one control loop

Target program: Brake-by-wire controller

Fault tolerance technique: Double time redundant execution + 5 other error detection mechanisms

Implementation techniques: Manual programming in C and Aspect-oriented programming using the optimized weaver

Johan Karlsson 20IFIP WG 10.4, July 3, 2011

IFIP WG 10.4 July 3, 2011

11

Error coverage – TRAM
(Double time Redundant execution + 5 other mechanisms)

Coverage
Over‐
h d

No Effect
Corrected

by
Detected

by
Detected
by HW

Program
H

Total
C

g
head

y
Software

y
Software

y
Exception

Hang Coverage

Low compiler
optimization

Manual C 187% 33.3% 0% 21.5% 44.8% 0.3% 100%

AspectC++Opt 271% 29.6% 0% 22.9% 47.4% 0.1% 100%

High compiler
optimization

Manual C 181% 34,2% 0% 24.2% 40.4% 0.1% 100%

AspectC++Opt 204% 30.6% 0% 30.9% 38.4% 0.2% 100%

Error model: Single bit -flips in CPU registers and volatile main memory

No. of injected errors for each program: 10.000

Johan Karlsson 21IFIP WG 10.4, July 3, 2011

Research Questions
(No definite answers)

RQ1 Can software-based mechanisms along with hardware exceptions g p
enforce fail silent/fail reporting failure semantics for hardware
faults that manifest as single-bit errors in instruction set
architecture (ISA) registers and the data segment of main memory?

Answer: Yes, it seems so, at least for simple control programs.

RQ2 How does compiler optimization influence error coverage?

Answer: We observed small mall or no differences in error
coverage between different optimization levels High compilercoverage between different optimization levels. High compiler
optimization led to a slightly reduced error coverage for the TTR-FR
mechanisms.

RQ3 How does the implementation language influence error coverage?

Answer: We observed small variations in error coverage among
different implementation techniques

Johan Karlsson 22IFIP WG 10.4, July 3, 2011

IFIP WG 10.4 July 3, 2011

12

Future research

• Assess the validity of the single-bit flip approximationAssess the validity of the single bit flip approximation

• Experiments with other target programs

• Investigate impact of multiple-bit errors

• Develop pre-injection analysis techniques for
identifying transitively dead registers/memory words

• I ti t i t f “ t f ” b h i f• Investigate impact of “out-of-spec” behavior of
microprocessors

• And many more …

Johan Karlsson 23IFIP WG 10.4, July 3, 2011

Acknowledgements

• Ruben Alexandersson (now with Volvo Cars)
Designed and implemented the aspect weavers– Designed and implemented the aspect weavers

– Inventor/implementor of the TTR-FR, DS-CFC and TRAM mechanisms

• Daniel Skarin (now with the Swedish Technical Research Institute)
– Designed the GOOFI-2 plug-in based software architecture

– Adapted GOOFI-2 to the brake-by-wire application

– Conducted a large number of fault injection campaigns with the brake-by-wire application

• Raul Barbosa (now ass. professor, University of Coimbra, Portugal)
– Implemented the pre-injection analysis module for GOOFI-2

– Develop support for instrumentation-based and exception-based fault injection

• Martin Sanfridson (Volvo Technology)
– Developed the brake-by-wire application and the associated environment simulator

• Peter Öhman (now Head of Test Site Sweden AB)
– Co-advisor to Ruben Alexandersson

Johan Karlsson 24IFIP WG 10.4, July 3, 2011

IFIP WG 10.4 July 3, 2011

13

Questions?

25Johan Karlsson IFIP WG 10.4, July 3, 2011

