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Transistor variability and degradation  

Shekhar Borkar, Intel Corp:

“As technology scales, variability in transistor 
performance will continue to increase, making 
transistors less and less reliable.   ….   

Finding solutions to these challenges will 
require a concerted effort on the part of all 
the players in a system design.”

Borkar, S.; "Designing reliable systems from unreliable components: the challenges of 
transistor variability and degradation," IEEE Micro, December 2005. 
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Sources of transistor failures 

• Process variations
– Random variations related to lithography, etching, dopant count

– Voltage and temperature variations 

• Wear out effects
– NBTI - negative bias temperature instability

– HCI - hot carrier injection

– Gate oxide breakdown

Electromigration– Electromigration

– …

• Ionizing particle radiation 
– Cosmic neutrons, alpha particles, muons, pions, …
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Bounded failure vs unbounded failure for 
brake-by-wire controller

Benign failure Critical failure
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Objectives of my talk 

• To report on results from fault injection experiments with several p j p
software-based techniques aim at handling transient hardware 
faults

• Briefly discuss the use of aspect-oriented programming for 
implementing software-based fault tolerance

• Compare error coverage for two implementation techniques: 
Manual programming in C and  Aspect-oriented programmingp g g p p g g

• Give some insights on how compiler optimizations influence the 
error coverage of software-based fault tolerance techniques
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Research Questions

RQ1 Can software-based mechanisms along with hardware Q g
exceptions enforce fail silent/fail reporting failure 
semantics for hardware faults that manifest as single-bit 
errors in instruction set architecture (ISA) registers and the 
data segment of main memory?

RQ2 How does compiler optimization influence error coverage?

RQ3 H d th i l t ti l i flRQ3 How does the implementation language influence error 
coverage?
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Outline

• Aspect-oriented implementation of error handling mechanismsp p g

• Experimental set-up

– Target system, workload, fault injection tool

• Results for two software-based error handling mechanism

– Execution time overhead

– Error coverage 

– Impact of implementation languageImpact of implementation language

• Manual programming in C vs. Aspect-oriented programming

– Impact of compiler optimization 
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Weaver versions

• Expressiveness study (LADC 2007)Expressiveness study (LADC 2007)
– Extension of the AspectC++ weaver

– AspectC++Ext

• Overhead study (EDCC 2010)
– Optimized weaver

– AspectC++Opt
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Experimental set-up

• Programs executed on a Freescale MPC565 PowerPC 
microcontroller

• Nexus-based fault injection
– Injection via debug port

– No need to change target programNo need to change target program

• Experiments conducted with the GOOFI-2 tool 

Overview of GOOFI-2
Generic Object-Oriented Fault Injection tool
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Workload: Brake-by-wire control loop
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Parts of the program executed during fault injection 
experiments encircled in red

Error model

• Single bit-flip errors in CPU registers and the dataSingle bit flip errors in CPU registers and the data 
segment of main memory

• Bit-flips are injected in register/memory word just 
before the register/memory word is read. This avoids 
injection of errors in dead data

• We use pre-injection analysis of the execution trace 
to identifying live data items

Note: No guarantee for not injecting errors in data 
items that are transitively dead

Johan Karlsson 14IFIP WG 10.4,  July 3, 2011



IFIP WG 10.4 July 3, 2011

8

Triple time redundant execution
with forward recovery (TTR-FR)

Purpose: Error masking and error detectionPurpose: Error masking and error detection

• Executes each control loop three times

• Errors masked by majority voting

• Three copies of program state

• Forward recovery:  erroneous program state replaced 
ith t t f t iwith program state of correct version

• Error signaled if no majority result found  
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Compiler optimization levels

• Low compiler optimizationLow compiler optimization
• GCC … -finline

• High compiler optimization
• GCC … -O3 -fno-strict-aliasing
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Comparison of overhead for TTR-FR

L il Hi h ilLow compiler 
optimization

High compiler 
optimization

No. of 
instructions

%
overhead

No. of 
instructions

%
overhead

Without TTR-FR 635 0% 245 0%

Manual C 2647 317% 943 285%

AspectC++Opt 3428 440% 973 297%

No. of instructions = Number of machine instructions executed in one control loop

Target program: Brake-by-wire controller

Fault tolerance technique: Triple time redundant execution and voting with forward recovery (TTR-FR)

Implementation techniques: Manual programming in C and Aspect-oriented programming using the optimized weaver
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Error coverage – TTR-FR
(Triple Time Redundant execution with Forward Recovery)

Coverage
Over‐
h d

No Effect
Corrected 

by 
Detected 

by 
Detected
by HW

Program
H

Total 
C

g
head

y
Software

y
Software

y
Exception

Hang Coverage

Low compiler 
optimization

Manual C 317% 34.5% 15.2% 0.9% 45.6% 0.2% 96.4%

AspectC++Opt 440% 33.2% 17.1% 0.5% 45.3% 0.3% 96.5%

High compiler 
optimization

Manual C 285% 34.2%  18.4%  1.3%  41.9%  0.1%  95.9% 

AspectC++Opt 297% 32.6%  20.7%  1.7%  40.4%  0.2%  95.6% 

Error model: Single bit -flips in CPU registers and  volatile main memory

No. of injected errors for each program: 10.000 
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Time redundancy and more (TRAM)

Purpose: error detectionPurpose: error detection

• Six checking mechanisms
– Double time redundant execution and result comparison

– Stack pointer and stack frame pointer integrity checks 

– Check that writes are made to correct data set 

– Counter-based control flow checking

– Check for fake resets
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Comparison of overhead for TRAM

L il Hi h ilLow compiler 
optimization

High compiler 
optimization

No. of 
instructions

%
overhead

No. of 
instructions

%
overhead

Without TRAM 635 0% 245 0%

Manual C 1824 187% 689 181%

AspectC++Opt 2358 271% 746 204%

No. of instructions = Number of machine instructions executed in one control loop

Target program: Brake-by-wire controller

Fault tolerance technique: Double time redundant execution + 5 other error detection mechanisms

Implementation techniques: Manual programming in C and Aspect-oriented programming using the optimized weaver
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Error coverage – TRAM
( Double time Redundant execution + 5 other mechanisms)

Coverage
Over‐
h d

No Effect
Corrected 

by 
Detected 

by 
Detected
by HW

Program
H

Total 
C

g
head

y
Software

y
Software

y
Exception

Hang Coverage

Low compiler 
optimization

Manual C 187% 33.3% 0% 21.5% 44.8% 0.3% 100%

AspectC++Opt 271% 29.6% 0% 22.9% 47.4% 0.1% 100%

High compiler 
optimization

Manual C 181% 34,2%  0%  24.2%  40.4%  0.1%  100% 

AspectC++Opt 204% 30.6%  0%  30.9%  38.4%  0.2%  100% 

Error model: Single bit -flips in CPU registers and  volatile main memory

No. of injected errors for each program: 10.000 
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Research Questions
(No definite answers)

RQ1 Can software-based mechanisms along with hardware exceptions g p
enforce fail silent/fail reporting failure semantics for hardware 
faults that manifest as single-bit errors in instruction set 
architecture (ISA) registers and the data segment of main memory? 

Answer: Yes, it seems so, at least for simple control programs.

RQ2 How does compiler optimization influence error coverage?

Answer:  We observed small mall or no differences in error 
coverage between different optimization levels High compilercoverage between different optimization levels.  High compiler 
optimization led to a slightly reduced error coverage for the TTR-FR 
mechanisms. 

RQ3 How does the implementation language influence error coverage?

Answer:  We observed small variations in error coverage among 
different implementation techniques
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Future research

• Assess the validity of the single-bit flip approximationAssess the validity of the single bit flip approximation

• Experiments with other target programs

• Investigate impact of multiple-bit errors

• Develop pre-injection analysis techniques for 
identifying transitively dead registers/memory words

• I ti t i t f “ t f ” b h i f• Investigate impact of “out-of-spec” behavior of 
microprocessors

• And many more …
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Questions?
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