
Hardware Support for
Reliability and Security:

Looking at the Future

Ravishankar Iyer
(with Nithin Nakka, Prateek Patel,

Karthik Pattabiraman, Zbigniew Kalbarczyk)

Center for Reliable and High Performance Computing
Coordinated Science Laboratory and Information Trust Institue

University of Illinois at Urbana-Champaign

1

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS

Dependability Techniques: A Little Bit of History

•  Testing and failure recovery in the ILLIAC machine at Illinois in
the early 1950s.

–  fault diagnosis using battery of programs that exercised different
sections of the machine

•  Space-borne computing systems
–  JPL-STAR (Self-Testing and Repair) computer (1971)

•  Aviation
–  Fly-by wire F-16 (?), Airbus, Boeing

•  Research Machines: c.mmp, FTMP, SIFT
•  Commercial systems

–  AT&T No.5 ESS
–  IBM S/360 and IBM S/370
–  Tandem Integrity S2

2

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS

Evolution of Fault Sources, Levels of Integration,
Users, and User Sophistication (Siewiorek, Kabalczyk, Chillerege)

3

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS

Growing Cost of Commodity Systems

•  Successful and cost effective use of Parity, ECC, and RAID in
commodity systems

•  Use of Significant redundancy in hardware and software led to
high overheads in

–  performance cost,
–  hardware components and software developments cost, e.g.,

•  IBM MVS operating system devotes 50% of its software code base to fault
management,

•  IBM G5 processor dedicates 35% of its processor silicon area to fault
detection and tolerance hardware

–  validation becomes increasingly complex and difficult

•  One-size-fits-all architectures
–  OK for high-end, high-cost systems, e.g., military, telecommunication,

and financial (Wall Street) applications
–  NOT OK for commodity environments

4

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS

What Changed?

•  Explosion of computing devices, e.g., mobile/hand-held
devices in a wide variety of applications,

•  Computing has become a social enterprise
•  Massive computing data centers servicing networked entities

from telecom to internet service providers to banks
•  New computing paradigms, e.g., cloud
•  Ubiquitous computing, present in everyday appliances, e.g.,

microwaves, vehicles, e-commerce and health monitoring,
•  With computing as a major enabling enterprise, outages

cannot longer be ignored or brushed aside with a marginal or
cursory solution

5

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS

Hardware Level Issues

•  A 10 petaflop supercomputer with ~300K cores has a very
substantial error rate

–  estimated MTBF is 100 min (hard and soft errors) and checkpointing
overhead is about 25%)

•  Decreasing feature sizes, bring reliability concerns at the
device level

–  e.g., recent bug in Intel’s Cougar Point SATA (Serial Advanced
Technology Attachment) port on the 6-Series Chipset

–  “in some cases, the Serial-ATA (SATA) ports within the chipsets may
degrade over time, potentially impacting the performance or
functionality of SATA-linked devices such as hard disk drives and DVD-
drives.”

–  The recall may reduce Intel's revenue by around $300 million and cost
around $700 million to completely repair and replace affected systems

6

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS

Issues at the platform level

•  Use of virtual machine-based systems transforms the system
view by introducing the Hypervisor

–  new set of interactions and consequent failure modes in the system

•  Non-uniform, dynamic geographic distribution of the nodes in
the cloud

–  violation of assumptions of traditional distributed systems regarding
communication overheads

–  legacy checkpointing techniques may incur significant overhead and
cannot be applied naïvely in the new scenario without investigation

–  non-deterministic costs due to the dynamic nature of the distributed
system

7

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS

Cloud Computing layered architecture

8

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS

Example Cloud Failures

•  Providing a higher level of reliability and availability remains a
major a challenges of Cloud computing

•  Amazon S3 failure
–  8 hour outage of Amazon services on July 20, 2008
–  caused by a single bit error in messages communicated (using a gossip

protocol) between the servers

–  data corrupted before being sent on the network using checksum

•  Google AppEngine’s partial outage (6/17/2008) due to a
programming error

•  Microsoft Azure’s outage (3/17/2009) for 22 hours due to the
malfunction in the hypervisor

9

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS

Early Warning of Such Failures

•  Similar failure patterns demonstrated in an error-injection
based experimental analysis of the Ensemble GCS – Group
Communication System (done at Illinois)

–  GCS formally specified and verified, but it constitutes only about 5% of
the entire code base

–  Additionally, 5–6% of application failures are due to an error that
escapes the GCS error-containment mechanism and manifests as silent
data corruption

10

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS

Competing Forces

•  HIGH dependability requirements for commodity systems
–  comparable with legacy systems that extensively used redundancy

•  SMALL cost margins for high availability
–  preclude use of traditional techniques, as-is, for these commodity

systems

•  New low-cost techniques that are tailored to the specific
needs of the application are required

11

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS

Application-aware Detection

Device/Circuit Level

Architectural Level

Operating System Level

Application Level
Application
Properties

Runtime Checks (Detectors)

•  App-aware: Use application properties to derive error and attack
detectors (runtime checks)

–  Achieve high-detection coverage with low overheads
–  Detect only attacks and errors that matter to the application
–  Ensure that attack and error is detected before propagation

12

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS

Challenges: Application-aware

  How do we identify app. properties to check ?
  Compiler-based static and dynamic analysis

  How do we validate the approach ?
  Experimental Methods: Fault-injection, modeling
  Formal Methods: Model-Checking

  How do we check/monitor the application ?
  Software or hardware (programmable)

13

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS

Unified Design Framework

Identify critical variables and their
location within a program

Apply heuristics, e.g., fanouts, to
identify critical variables.

Use application semantics to identify
security critical variables, e.g., a password

Static program analysis: Extract
backward slices of critical variables

Generate checks to verify that value is
produced by legitimate instructions.

Reliability Security

Runtime checking to ensure integrity of
critical variables according to the slice

Critical Variable
Recomputation

Information-flow
signatures (IFS)

Generate correctness checks for data
values in critical program locations

14

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS

•  Selectively enforce source-level properties of writes to
critical data at runtime

•  Techniques:
–  IFS (information flow signatures) – protects critical data integrity
–  CVR (critical value re-computation) – verifies correctness of critical

data computation

•  Attack Models
–  Memory corruption attacks (e.g. buffer overflows)
–  Insider attacks (malicious libraries, 3rd party plugins)
–  Program binary modifications after compilation

•  Fault Models
–  Soft errors
–  Memory corruption errors
–  Race conditions and/or atomicity violations

Techniques and Attack/Error Models

15

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS

Hybrid Implementation (hw + sw)

• Runtime enforcement using combination of hardware and
software

• Single hardware framework to host
modules providing reliability and
security protection
–  FPGA-based prototype evaluated on

embedded programs and network
applications (e.g., OpenSSH)

–  Performance overhead
1% to 70%
(depending on the application)

–  Area overhead = 4% to 50 %
(relative to Leon3 processor)

16

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS

•  Avg. SW Performance Overhead
• Checking = 25%
• Modification = 8%
•  Total = 33 %

•  Avg. Coverage (Crashes)
• Before Prop = 64 %
• Before Crash = 13%

•  Total Detected = 77 %
•  Benign errors detect = 3 %

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS

Significant performance gain
over software implementation

18

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS

Where do we go from here?

19

Reliability and Security Engine (RSE)
Single-core chip architecture

Heterogeneous multi-core chip
architecture

FPGA-based
prototype

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS

Trusted ILLIAC: A Configurable, Application-Aware,
High-Performance Platform for Trustworthy Computing

20

•  Provide application-specific level of
reliability and security, while delivering
performance.

•  Enforce customized levels of trust via
an integrated approach involving:

 - configurable hardware,
 - compiler methods to extract applications

 security and reliability properties,
 - configurable OS and middleware.

•  Enable rapid deployment of low-cost
application aware engines and
processing cores

•  Support OS and middleware to
facilitate model-driven trust
management and oversight in
protecting against wide range of
attacks and failures.

Base Cluster
• 256 Linux nodes

Trusted
ILLIAC Node

FPGA - based
hardware

Validation of Trusted
ILLIAC Configurations

