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Dependability Techniques: A Little Bit of History 

•  Testing and failure recovery in the ILLIAC machine at Illinois in 
the early 1950s.  

–  fault diagnosis using battery of programs that exercised different 
sections of the machine 

•  Space-borne computing systems  
–  JPL-STAR (Self-Testing and Repair) computer (1971)  

•  Aviation 
–  Fly-by wire F-16 (?), Airbus, Boeing 

•  Research Machines: c.mmp, FTMP, SIFT 
•  Commercial systems 

–  AT&T No.5 ESS  
–  IBM S/360 and IBM S/370 
–  Tandem Integrity S2 
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Evolution of Fault Sources, Levels of Integration,  
Users, and User Sophistication (Siewiorek, Kabalczyk, Chillerege) 
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Growing Cost of Commodity Systems 

•  Successful and cost effective use of Parity, ECC, and RAID in 
commodity systems 

•  Use of Significant redundancy in hardware and software led to 
high overheads in  

–  performance cost,  
–  hardware components and software developments cost, e.g., 

•  IBM MVS operating system devotes 50% of its software code base to fault 
management,  

•  IBM G5 processor dedicates 35% of its processor silicon area to fault 
detection and tolerance hardware  

–  validation becomes increasingly complex and difficult 

•  One-size-fits-all architectures  
–  OK for high-end, high-cost systems, e.g., military, telecommunication, 

and financial (Wall Street) applications 
–  NOT OK for commodity environments 
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What Changed? 

•  Explosion of computing devices, e.g., mobile/hand-held 
devices in a wide variety of applications,  

•  Computing has become a social enterprise 
•  Massive computing data centers servicing networked entities 

from telecom to internet service providers to banks 
•  New computing paradigms, e.g., cloud  
•  Ubiquitous computing, present in everyday appliances, e.g., 

microwaves, vehicles, e-commerce and health monitoring,  
•  With computing as a major enabling enterprise, outages 

cannot longer be ignored or brushed aside with a marginal or 
cursory solution  
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Hardware Level Issues 

•  A 10 petaflop supercomputer with ~300K cores has a very 
substantial error rate  

–  estimated MTBF is 100 min (hard and soft errors) and checkpointing 
overhead is about 25%)  

•  Decreasing feature sizes, bring reliability concerns at the 
device level  

–  e.g., recent bug in Intel’s Cougar Point SATA (Serial Advanced 
Technology Attachment) port on the 6-Series Chipset  

–  “in some cases, the Serial-ATA (SATA) ports within the chipsets may 
degrade over time, potentially impacting the performance or 
functionality of SATA-linked devices such as hard disk drives and DVD-
drives.”  

–  The recall may reduce Intel's revenue by around $300 million and cost 
around $700 million to completely repair and replace affected systems 
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Issues at the platform level 

•  Use of virtual machine-based systems transforms the system 
view by introducing the Hypervisor  

–  new set of interactions and consequent failure modes in the system 

•  Non-uniform, dynamic geographic distribution of the nodes in 
the cloud  

–  violation of assumptions of traditional distributed systems regarding 
communication overheads 

–  legacy checkpointing techniques may incur significant overhead and 
cannot be applied naïvely in the new scenario without investigation  

–  non-deterministic costs due to the dynamic nature of the distributed 
system  
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Cloud Computing layered architecture 
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Example    Cloud Failures 

•  Providing a higher level of reliability and availability remains a 
major a challenges of Cloud computing 

•  Amazon S3 failure 
–  8 hour outage of Amazon services on July 20, 2008  
–  caused by a single bit error in messages communicated (using a gossip 

protocol) between the servers 

–  data corrupted before being sent on the network using checksum 

•  Google AppEngine’s partial outage (6/17/2008) due to a 
programming error 

•  Microsoft Azure’s outage (3/17/2009) for 22 hours due to the 
malfunction in the hypervisor 
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Early Warning of Such Failures 

•  Similar failure patterns demonstrated in an error-injection 
based experimental analysis of the Ensemble GCS – Group 
Communication System (done at Illinois) 

–  GCS formally specified and verified, but it constitutes only about 5% of 
the entire code base 

–  Additionally, 5–6% of application failures are due to an error that 
escapes the GCS error-containment mechanism and manifests as silent 
data corruption  
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Competing Forces 

•  HIGH dependability requirements for commodity systems  
–  comparable with legacy systems that extensively used redundancy  

•  SMALL cost margins for high availability  
–  preclude use of traditional techniques, as-is, for these commodity 

systems  

•  New low-cost techniques that are tailored to the specific 
needs of the application are required 
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Application-aware Detection 

Device/Circuit Level 

Architectural Level   

Operating System Level 

Application Level 
Application 
Properties 

Runtime Checks (Detectors) 

•  App-aware: Use application properties to derive error and attack 
detectors (runtime checks) 

–  Achieve high-detection coverage with low overheads 
–  Detect only attacks and errors that matter to the application 
–  Ensure that attack and error is detected  before propagation 
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Challenges: Application-aware 

  How do we identify app. properties to check ? 
  Compiler-based static and dynamic analysis 

  How do we validate the approach ? 
  Experimental Methods: Fault-injection, modeling  
  Formal Methods: Model-Checking 

  How do we check/monitor the application ? 
  Software or hardware (programmable) 
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Unified Design Framework 

Identify critical variables and their 
location within a program 

Apply heuristics, e.g., fanouts, to 
identify critical variables.   

Use application semantics to identify 
security critical variables, e.g., a password  

Static program analysis:  Extract 
backward slices of critical variables 

Generate checks to verify that value is 
produced by legitimate instructions.   

Reliability Security 

Runtime checking to ensure integrity of 
critical variables according to the slice 

Critical Variable 
Recomputation 

Information-flow 
signatures (IFS) 

Generate correctness checks for data 
values in critical program locations  
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•  Selectively enforce source-level properties of writes to 
critical data at runtime 

•  Techniques:  
–  IFS (information flow signatures) – protects critical data integrity 
–  CVR (critical value re-computation) – verifies correctness of critical 

data computation 

•  Attack Models 
–  Memory corruption attacks (e.g. buffer overflows) 
–  Insider attacks (malicious libraries, 3rd party plugins) 
–  Program binary modifications after compilation 

•  Fault Models 
–  Soft errors 
–  Memory corruption errors 
–  Race conditions and/or atomicity violations 

Techniques and Attack/Error Models 
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Hybrid Implementation (hw + sw) 

• Runtime enforcement using combination of hardware and 
software 

• Single hardware framework to host  
modules providing reliability and  
security protection 
–  FPGA-based prototype evaluated on  

embedded programs and network  
applications (e.g., OpenSSH) 

–  Performance overhead  
1% to 70%  
(depending on the application) 

–  Area overhead = 4% to 50 %  
(relative to Leon3 processor)  
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•   Avg. SW Performance Overhead  
• Checking = 25% 
• Modification = 8% 
•  Total = 33 %   

•   Avg. Coverage (Crashes) 
• Before Prop = 64 % 
• Before Crash = 13% 

•  Total Detected = 77 % 
•   Benign errors detect = 3 % 
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Significant performance gain 
over software implementation 
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Where do we go from here? 
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Reliability and Security Engine (RSE) 
Single-core chip architecture 

Heterogeneous multi-core chip 
architecture 

FPGA-based 
prototype 
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Trusted ILLIAC: A Configurable, Application-Aware,  
High-Performance Platform for Trustworthy Computing 
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•  Provide application-specific level of 
reliability and security, while delivering 
performance.  

•  Enforce customized levels of trust via 
an integrated approach involving:  

       - configurable hardware, 
        - compiler methods to extract  applications  

    security and reliability properties, 
        - configurable OS and middleware.  

•  Enable rapid deployment of low-cost 
application aware engines and 
processing cores  

•  Support OS and middleware to 
facilitate model-driven trust 
management and oversight in 
protecting against wide range of 
attacks and failures.  

Base Cluster 
• 256 Linux nodes 

Trusted  
ILLIAC Node 

FPGA - based  
hardware 

Validation of  Trusted  
ILLIAC Configurations  


