

60th Meeting of IFIP WG10.4 on Dependable Computing and Fault Tolerance

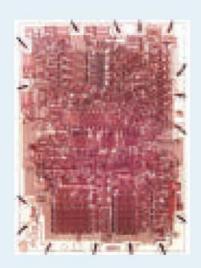
July 1-4, 2011 — Jhong Li City, Taoyuan, Taiwan

Workshop Hardware Issues in Dependable and Secure Computing

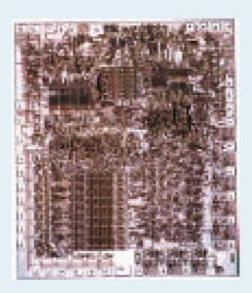
Organizers:

Jean Arlat LAAS-CNRS

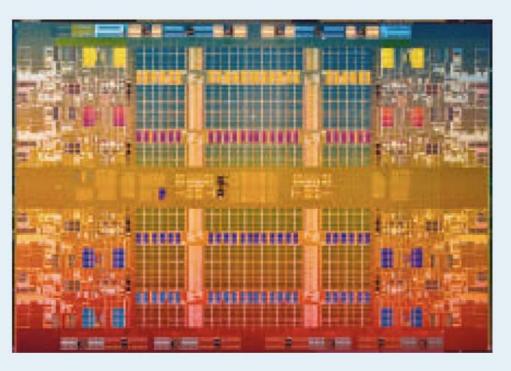
Zbigniew Kalbarczyk


Takashi Nanya
Canon Inc.

Hardware Technology Trends

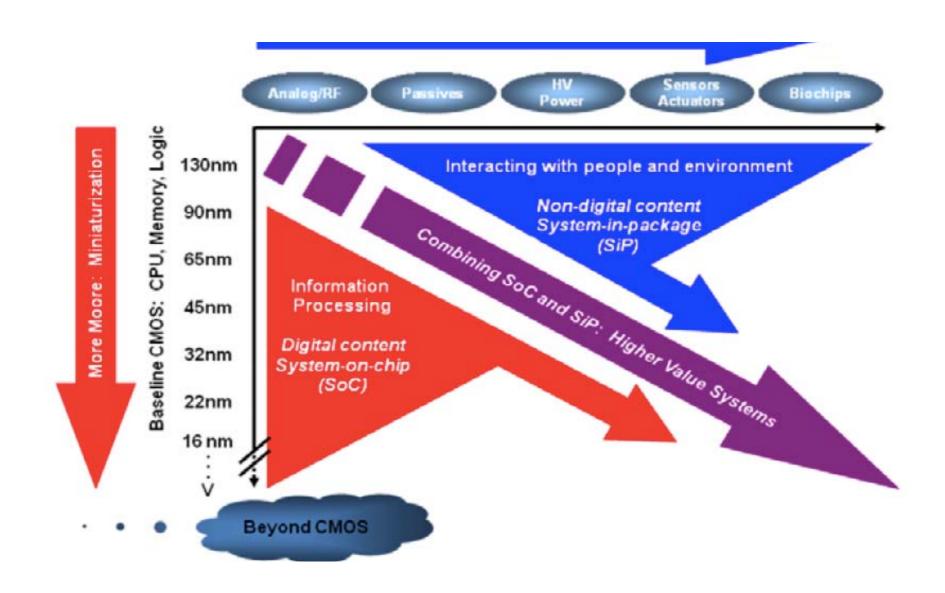

- Tracks towards nanoscale and future computing
 - ◆ Top Down (More Moore) Shrinking CMOS technology devices
 ?? Increasing impact of variations in features
 - ◆ Bottom up (Beyond CMOS) Self-assembling nanoscale elements
 ?? Signal amplification, selective control, ...
 - ◆ Diversification (More than Moore) Enhancing functionalities, Hybridation (SOCs, SIPs, MEMS)
 - ?? Enhanced complexity, HW/SW-inclusive design, ...
- In all cases, increased unreliability, higher susceptibility and even unpredictability, is to be expected...

Shekhar Borkar and Andrew A. Chien, "The Future of Microprocessors", CACM, May 2011, pp.67-77


Figure 1. Evolution of Intel microprocessors 1971–2009.

Intel 4004, 1971 1 core, no cache 23K transistors

Intel 8088, 1978 1 core, no cache 29K transistors



Intel Mehalem-EX, 2009 8 cores, 24MB cache 2.3B transistors

Some Further Rationale

- ITRS (International Technology Roadmap for Semiconductors)
 - ◆ 2008 Edition: Crosscutting Challenge 5: Reliability
 - ◆ 2009 Edition: Crosscutting Challenge 5: Reliability & Resilience
- Quoting the Design Section [http://www.itrs.net]
 - ◆ Relaxing the requirement of 100% correctness for devices and interconnects may dramatically reduce costs of manufacturing, verification, and test.
 - ◆ Such a paradigm shift will likely be forced in any case by technology scaling, which leads to more transient and permanent failures of signals, logic values, devices, and interconnects.
 - ◆ In general, automatic insertion of robustness into the design will become a priority as systems become too large to be functionally tested at manufacturing exit.
 - ◆ Potential solutions include automatic introduction of redundant logic and on-chip reconfigurability for fault tolerance, development of adaptive and self-correcting or self-healing circuits, and software-based fault- tolerance.

International Technology Roadmap For Semiconductors — 2010 Update

Emerging Services

- Advances in hardware technologies
 - —> Development of embedded systems and unprecedented spread of pervasive computerized devices and services

Ubiquituous & Pervasive Computing

Ambiant Intelligence

Internet of Things

Even, more : Everyware, Smart Dust, Haptic Computing, Things that Think, Cyber-Physical Systems,...

- Enabling technologies and algorithms
 - —> Sensors, Communication networks, Actuators, Virtualization, Data processing,...
- Wide range of services and applications
 - -> Health, Environment, Transportation, Energy,...
- Threats: Accidental and malicious faults!

About WDSN Workshop on Dependable and Secure Nanocomputing

- 1st Edition at DSN-2007: Raising up the Awareness
- 2nd Edition at DSN-2008: Bringing up a Community
- 3rd Edition at DSN-2009: Link with IOLTS Community (42 attendees 18 countries)
- 4th Edition at DSN-2010: Link with European Test Symp. Community (49 attendees 9 countries)
- 5th Edition at DSN-2011: Strong participation of Asian Community
 - -> www.laas.fr/WDSNxx, xx $\in \{07,08,09,10,11\}$

Program-at-a-Glance

Moderator

	Moderator
1- Emerging Hardware Development in Taiwan Ch Bruce Smith, Rex Sung, Shih-Chieh Chang, Yen-Kuang Chen	uck Weinstock
2- Hardware Architectures and Systems	Phil Koopman
3- Hardware-related Fault Pathologies	
4- Assessment Methods and Techniques	Luca Simoncini
Wrap-Up	All