
2011.07.04 1

Duplicated execution method for
NoC-based Multiple Processor Systems

with Restricted Private Memories

Masashi Imai
(miyabi@hal.rcast.u-tokyo.ac.jp)

60th IFIP WG 10.4 Meeting

Background
  VLSI technology scaling

 The performance improvement of a single processor is limited
due to clock skew, power dissipation, ILP, and complexity

  CMP (Chip Multi-Processor) and MPSoC (Multiple-
Processor System-on-a-Chip)
  Promising architecture, not only for high performance but also
for dependability

  Even if a processor core becomes faulty, the remaining cores can
continue to operate

  A simple bus architecture does not scale with the system
size as the bandwidth is shared by all the cores attached it

  On-chip network is a feasible solution to many-core
systems

 Focus on NoC-based multiple processor core architecture
  “Dependable Network-on-Chip Platform” project funded by CREST

@JST (Japan Science and Technology Agency)

2011.07.04 2 60th IFIP WG 10.4 Meeting

Target applications
  Automotive engine control

  Various periodic tasks control
actuators in response to the
corresponding sensor inputs in a
deadline period (ex. 4msec)

  Conventional methods

2011.07.04 3

Sensor
-Actuator

Sensor
-Actuator

Sensor
-Actuator

ECU-1

ECU-2

ECU-3
ECU-n

Sensor
-Actuator

60th IFIP WG 10.4 Meeting (n > 50)

Target applications
  Automotive engine control

  NoC-based MPSoC approach

2011.07.04 4

R

R

R

R R

NoC-based
MPSoC ECU

/ core

Processor
cores

Sensor
-Actuator

Sensor
-Actuator

Sensor
-Actuator

60th IFIP WG 10.4 Meeting

Task allocation and scheduling
  Task allocation and scheduling method is a main
issue for performance optimization
  Dynamic task allocation methods

 [E.Carvalho,RSP07][C.L.Chou,DATE08][T.Wei,ISQED10]
 [K.Lakshmanan,RTSS10]…

  Static task allocation methods
 [J.Hu,Trans.CAD05][C.Marcon,ASP-DAC05] …

  These allocation methods depend on memory
architecture in on-chip networks
  Single shared memory
  Multiple private memories

2011.07.04 5 60th IFIP WG 10.4 Meeting

Task allocation and scheduling
  Single shared memory

  All the processor cores can perform all the tasks
  Requires a high speed memory interface and a
mechanism to keep cache coherence
 Not suited for embedded systems like automotive
control systems

2011.07.04 6 60th IFIP WG 10.4 Meeting

Processor
core-00

I/O-0 I/O-1

Shared
memory core

Processor
core-11

Processor
core-10

I/O-n

Processor
core-n1

Processor
core-n0

00 10 20 n0

01 11 21 n1

02 12 22 n2

Task allocation and scheduling
  Multiple private memories

  Mechanism is very simple
  Each processor core can only perform a restricted
number of tasks
 Suited for embedded systems

  The amount of tasks in embedded systems is small

2011.07.04 7 60th IFIP WG 10.4 Meeting

Objectives
  Target system: NoC-based MPSoC system
where each processor core has its small private
memory

  Propose an effective static task allocation
method in order to improve the dependability of
target systems
  Each task is quadruplicated and statically assigned to
private memories
  The performance improvement is evaluated using
MTTF (Mean Time To Failure)

2011.07.04 8 60th IFIP WG 10.4 Meeting

NoC-based MPSoC
 Architecture overview

  2D mesh NoC

  I/O cores connect to routers where y=2
 Gather sensor inputs and assign tasks to processor
cores

  Processor cores connect to routers where y=0,1
  Each processor core has its private memory

2011.07.04 9

Processor
core-00

I/O-0 I/O-1

Processor
core-01

mem-00

Processor
core-11

Processor
core-10

I/O-n

Processor
core-n1

Processor
core-n0

00 10 20 n0

01 11 21 n1

02 12 22 n2

mem-10 mem-n0

mem-01 mem-11 mem-n1

60th IFIP WG 10.4 Meeting

Fault model
  Single-core fault model

  A fault is only capable of occurring in a single
processor core of an NoC-based MPSoC at any one
moment in time

  Permanent fault
  We must identify the faulty core and stop using it

  Transient fault
  The core in which a transient fault occurs can be
recovered by re-executing from the latest checkpoint
 We do not have to stop using it immediately

  There is no fault in I/O cores
(For simple evaluation in this presentation)

2011.07.04 10 60th IFIP WG 10.4 Meeting

Fault detection and recovery
  Several studies have been made using CMPs to detect

faults and recovery
  mSWAT: software-based HW and SW fault detection and

diagnosis method
  DCC (Dynamic Core Coupling): processor-level fault tolerance

technique
  Employ a TMR using hot spares in order to isolate a failure core
and recovery its task

  Pair & Swap: processor-level fault tolerance technique
  Pair phase: replication and comparison
  Swap phase: swap and retry (retry and decision)

  etc, ……

  In this research, fault detection and recovery are
performed based on the pair & swap scheme

2011.07.04 11 60th IFIP WG 10.4 Meeting

Basic mechanism
  Proposal: Each task is quadruplicated and
statically assigned to private memories so that
each private memory has only two different
tasks
  Ex. 6 core system
  Task A, B, and C

  Task A can be performed by
P00,P01, P10,P11
  Task B: P10,P11, P20,P21
  Task C: P20,P21, P00,P01

2011.07.04 12 60th IFIP WG 10.4 Meeting

P01

P00

P11

P10

P21

P20

Task C,A Task A,B Task B,C

I/O core

Task C,A Task A,B Task B,C

outside of a chip

sensor/actuator sensor/actuator sensor/actuator

  Compose three pairs in
order to detect faults by
comparison of
computation results

Basic mechanism
  Non faulty operation

2011.07.04 13

time

I/O core

P00

P01

P10

P11

P20

P21

Task A

Task A

Task B

Task B

Task C

Task C

 deadline period

Task A

Task A

Task B

Task B

Task C

Task C

task
assign

compare
and decide

task
assign

compare
and decide

A: P00 = P01
B: P10 = P11
C: P20 = P21

A: P00 = P01
B: P10 = P11
C: P20 = P21

P01

P00

P11

P10

P21

P20

Task C,A Task A,B Task B,C

I/O core

Task C,A Task A,B Task B,C

outside of a chip

60th IFIP WG 10.4 Meeting

No mismatch

Fault location mechanism
 Transient fault operation

2011.07.04 14

time

I/O core

P00

P01

P10

P11

P20

P21

Task A

Task A

Task B

Task B

Task C

Task C

 deadline period

Task A

Task A

Task B

Task B

Task C

Task C

Task A

Task A

Task A

A: P00 = P01
B: P10 = P11
C: P20 = P21

A: P00 = P01
A: P00 = P10
A: P01 = P10

A: P00 <> P01
B: P10 = P11
C: P20 = P21

60th IFIP WG 10.4 Meeting

1 mismatch

No mismatch
in TMR

I/O core

P00

P01

P10

P11

P20

P21

Task A

Task A

Task B

Task B

Task C

Task C

 deadline period

Task A

Task B

Task B

Task C

Task C

Task A

Task A

Task A

Task A

A:P01 = P10

B: P10 = P11
C: P20 = P21

A: P00 <> P01
B: P10 = P11
C: P20 = P21

A: P00 <> P01
A: P00 <> P10
A: P01 = P10

time

Fault location mechanism
 Permanent fault operation

  The deadline period is assumed to be enough long to
execute three tasks sequentially
 Performance degradation does not occur

2011.07.04 15 60th IFIP WG 10.4 Meeting

1 mismatch

2 mismatches
in TMR

Fault location mechanism
 Features

 Require at most three sequential task
executions in the deadline period in order to
diagnose the type of faults and identify a
faulty processor core
 Transient faults can be completely masked
without performance overhead

 The entire system can achieve graceful
degradation

  In the successful case, it can be allowed that N
processor cores get failed in a 2N core NoC-based
MPSoC

2011.07.04 16 60th IFIP WG 10.4 Meeting

Static task allocation method
 The number of tasks is larger than 3,
various configurations can be considered
 Ex. 6 tasks; task A,B,C,D,E, and F

1) 6-cyclic

2) 3-cyclic x2

3) 2-cyclic x3

2011.07.04 17

P00

P01

A,B

A,B

P10

P11

B,C

B,C

P20

P21

C,D

C,D

P30

P31

D,E

D,E

P40

P41

E,F

E,F

P50

P51

F,A

F,A

P00

P01

A,B

A,B

P10

P11

B,C

B,C

P20

P21

C,A

C,A

P30

P31

D,E

D,E

P40

P41

E,F

E,F

P50

P51

F,D

F,D

P00

P01

A,B

A,B

P10

P11

B,A

B,A

P20

P21

C,D

C,D

P30

P31

D,C

D,C

P40

P41

E,F

E,F

P50

P51

F,E

F,E

Coarse-
grain

Fine-
grain

60th IFIP WG 10.4 Meeting

Evaluation (1)
  Research question: How to statically allocate
tasks to each private memories in order to
improve performance?
  Coarse-grain configuration?
  Fine-grain configuration?

  The performance improvement is evaluated
using MTTF (Mean Time To Failure)

2011.07.04 18 60th IFIP WG 10.4 Meeting

Comparison result (1)
  No memory faults, 6 tasks
  The failure rate of a processor core: λ

 Fine-grain (2-cyclic) configuration is effective!

2011.07.04 19

Configurationn System MTTF
6-cyclic 0.511 / λ
3-cyclic x 2 0.507 / λ
2-cyclic x 3 0.596 / λ

60th IFIP WG 10.4 Meeting

Static task allocation method
  When P10 and P11 get failed
  Cyclic-6

  Cyclic-3 x2

  Cyclic-2 x3

2011.07.04 20

P00

P01

A,B

A,B

P10

P11

B,C

B,C

P20

P21

C,D

C,D

P30

P31

D,E

D,E

P40

P41

E,F

E,F

P50

P51

F,A

F,A

P00

P01

A,B

A,B

P10

P11

B,C

B,C

P20

P21

C,A

C,A

P30

P31

D,E

D,E

P40

P41

E,F

E,F

P50

P51

F,D

F,D

P00

P01

A,B

A,B

P10

P11

B,A

B,A

P20

P21

C,D

C,D

P30

P31

D,C

D,C

P40

P41

E,F

E,F

P50

P51

F,E

F,E

60th IFIP WG 10.4 Meeting

Static task allocation method
  When P10,P11, P30,P31 get failed
  Cyclic-6

  Cyclic-3 x2

  Cyclic-2 x3

2011.07.04 21

P00

P01

A,B

A,B

P10

P11

B,C

B,C

P20

P21

C,D

C,D

P30

P31

D,E

D,E

P40

P41

E,F

E,F

P50

P51

F,A

F,A

P00

P01

A,B

A,B

P10

P11

B,C

B,C

P20

P21

C,A

C,A

P30

P31

D,E

D,E

P40

P41

E,F

E,F

P50

P51

F,D

F,D

P00

P01

A,B

A,B

P10

P11

B,A

B,A

P20

P21

C,D

C,D

P30

P31

D,C

D,C

P40

P41

E,F

E,F

P50

P51

F,E

F,E

60th IFIP WG 10.4 Meeting

Evaluation (2)
  Comparison targets

a) Duplicated task allocation

  Each task can be performed by only two processor
cores to compare their results
 If a permanent fault occurs, the whole system gets
failed immediately

b) Triplicated task allocation
  The basic operation is the same as

the proposed quadruplicated system

  In the retry-and-decision phase, compose a TMR and
identify the faulty core
 If the second permanent fault occurs in the remaining
pairs, the whole system gets failed

2011.07.04 22

P11 P21

P00 P10 P20

P01

Task A Task B Task C

Task A Task B Task C

P01 P11 P21

P00 P10 P20

Task A Task B Task C

Task A,B Task B,C Task C,A

60th IFIP WG 10.4 Meeting

Comparison result (2)
 No memory faults, 6 tasks
 The failure rate of a processor core: λ

 The MTTF of quadruplicated system is over 7
times longer than duplicated system while
the amount of memory is only twice

2011.07.04 23

Coonfiguurraattiioon Syysstteemm MTTTTF
Duplicated 0.0833/λ (1.00)
Triplicated (2-cyclic x3) 0.311/λ (3.73)
Quadruplicated (2-cyclic x3) 0.596/λ (7.15)

60th IFIP WG 10.4 Meeting

Comparison result (2)
  Scalability

  The ratio of MTTF to the duplicated configuration

  The proposed quadruplicated static task allocation
method is effective as the number of tasks increases

2011.07.04 24

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7

R
el

at
iv

e
M

T
T

F
to

 (
a)

D
up

lic
at

ed
 s

ys
te

m

of tasks

(a)Duplicated
(b)Triplicated

Quadruplicated

60th IFIP WG 10.4 Meeting

Chip implementation
  Using 130nm process technology

  We are now testing and evaluating this chip
2011.07.04 60th IFIP WG 10.4 Meeting 25

10m
m

V850E CPU
cores x8

I/O cores

Conclusion
  We have proposed a processor-level fault tolerance

technique for NoC-based MPSoCs where each processor
core has its small private memory
  Each task is quadruplicated and statically assigned to
private memories so that each memory has only two
different tasks and fine-grain task pairs can be composed

  We have evaluated the MTTF of the proposed task
allocation method
  The MTTF is over 4.3 times longer than that of the
duplicated task allocation
  It is more effective as the number of simultaneously
executed tasks increases

2011.07.04 26 60th IFIP WG 10.4 Meeting

