
2011.07.04 1

Duplicated execution method for
NoC-based Multiple Processor Systems

with Restricted Private Memories

Masashi Imai
(miyabi@hal.rcast.u-tokyo.ac.jp)

60th IFIP WG 10.4 Meeting

Background
�   VLSI technology scaling

 The performance improvement of a single processor is limited
due to clock skew, power dissipation, ILP, and complexity

�   CMP (Chip Multi-Processor) and MPSoC (Multiple-
Processor System-on-a-Chip)
�   Promising architecture, not only for high performance but also

for dependability
�   Even if a processor core becomes faulty, the remaining cores can

continue to operate
�   A simple bus architecture does not scale with the system

size as the bandwidth is shared by all the cores attached it
�   On-chip network is a feasible solution to many-core

systems
 Focus on NoC-based multiple processor core architecture
�   “Dependable Network-on-Chip Platform” project funded by CREST

@JST (Japan Science and Technology Agency)

2011.07.04 2 60th IFIP WG 10.4 Meeting

Target applications
�   Automotive engine control

�   Various periodic tasks control
actuators in response to the
corresponding sensor inputs in a
deadline period (ex. 4msec)

�   Conventional methods

2011.07.04 3

Sensor
-Actuator

Sensor
-Actuator

Sensor
-Actuator

ECU-1

ECU-2

ECU-3
ECU-n

Sensor
-Actuator

60th IFIP WG 10.4 Meeting (n > 50)

Target applications
�   Automotive engine control

�   NoC-based MPSoC approach

2011.07.04 4

R

R

R

R R

NoC-based
MPSoC ECU

/ core

Processor
cores

Sensor
-Actuator

Sensor
-Actuator

Sensor
-Actuator

60th IFIP WG 10.4 Meeting

Task allocation and scheduling
�   Task allocation and scheduling method is a main

issue for performance optimization
�   Dynamic task allocation methods

 [E.Carvalho,RSP07][C.L.Chou,DATE08][T.Wei,ISQED10]
 [K.Lakshmanan,RTSS10]…

�   Static task allocation methods
 [J.Hu,Trans.CAD05][C.Marcon,ASP-DAC05] …

�   These allocation methods depend on memory
architecture in on-chip networks
�   Single shared memory
�   Multiple private memories

2011.07.04 5 60th IFIP WG 10.4 Meeting

Task allocation and scheduling
�   Single shared memory

�   All the processor cores can perform all the tasks
�   Requires a high speed memory interface and a

mechanism to keep cache coherence
 Not suited for embedded systems like automotive
control systems

2011.07.04 6 60th IFIP WG 10.4 Meeting

Processor
core-00

I/O-0 I/O-1

Shared
memory core

Processor
core-11

Processor
core-10

I/O-n

Processor
core-n1

Processor
core-n0

00 10 20 n0

01 11 21 n1

02 12 22 n2

Task allocation and scheduling
�   Multiple private memories

�   Mechanism is very simple
�   Each processor core can only perform a restricted

number of tasks
 Suited for embedded systems
�   The amount of tasks in embedded systems is small

2011.07.04 7 60th IFIP WG 10.4 Meeting

Objectives
�   Target system: NoC-based MPSoC system

where each processor core has its small private
memory

�   Propose an effective static task allocation
method in order to improve the dependability of
target systems
�   Each task is quadruplicated and statically assigned to

private memories
�   The performance improvement is evaluated using

MTTF (Mean Time To Failure)

2011.07.04 8 60th IFIP WG 10.4 Meeting

NoC-based MPSoC
�  Architecture overview

�   2D mesh NoC

�   I/O cores connect to routers where y=2
�  Gather sensor inputs and assign tasks to processor

cores
�   Processor cores connect to routers where y=0,1

�   Each processor core has its private memory
2011.07.04 9

Processor
core-00

I/O-0 I/O-1

Processor
core-01

mem-00

Processor
core-11

Processor
core-10

I/O-n

Processor
core-n1

Processor
core-n0

00 10 20 n0

01 11 21 n1

02 12 22 n2

mem-10 mem-n0

mem-01 mem-11 mem-n1

60th IFIP WG 10.4 Meeting

Fault model
�   Single-core fault model

�   A fault is only capable of occurring in a single
processor core of an NoC-based MPSoC at any one
moment in time

�   Permanent fault
�   We must identify the faulty core and stop using it

�   Transient fault
�   The core in which a transient fault occurs can be

recovered by re-executing from the latest checkpoint
 We do not have to stop using it immediately

�   There is no fault in I/O cores
(For simple evaluation in this presentation)

2011.07.04 10 60th IFIP WG 10.4 Meeting

Fault detection and recovery
�   Several studies have been made using CMPs to detect

faults and recovery
�   mSWAT: software-based HW and SW fault detection and

diagnosis method
�   DCC (Dynamic Core Coupling): processor-level fault tolerance

technique
�   Employ a TMR using hot spares in order to isolate a failure core

and recovery its task
�   Pair & Swap: processor-level fault tolerance technique

�   Pair phase: replication and comparison
�   Swap phase: swap and retry (retry and decision)

�   etc, ……

�   In this research, fault detection and recovery are
performed based on the pair & swap scheme

2011.07.04 11 60th IFIP WG 10.4 Meeting

Basic mechanism
�   Proposal: Each task is quadruplicated and

statically assigned to private memories so that
each private memory has only two different
tasks
�   Ex. 6 core system
�   Task A, B, and C

�   Task A can be performed by
P00,P01, P10,P11
�   Task B: P10,P11, P20,P21
�   Task C: P20,P21, P00,P01

2011.07.04 12 60th IFIP WG 10.4 Meeting

P01

P00

P11

P10

P21

P20

Task C,A Task A,B Task B,C

I/O core

Task C,A Task A,B Task B,C

outside of a chip

sensor/actuator sensor/actuator sensor/actuator

�   Compose three pairs in
order to detect faults by
comparison of
computation results

Basic mechanism
�   Non faulty operation

2011.07.04 13

time

I/O core

P00

P01

P10

P11

P20

P21

Task A

Task A

Task B

Task B

Task C

Task C

 deadline period

Task A

Task A

Task B

Task B

Task C

Task C

task
assign

compare
and decide

task
assign

compare
and decide

A: P00 = P01
B: P10 = P11
C: P20 = P21

A: P00 = P01
B: P10 = P11
C: P20 = P21

P01

P00

P11

P10

P21

P20

Task C,A Task A,B Task B,C

I/O core

Task C,A Task A,B Task B,C

outside of a chip

60th IFIP WG 10.4 Meeting

No mismatch

Fault location mechanism
�  Transient fault operation

2011.07.04 14

time

I/O core

P00

P01

P10

P11

P20

P21

Task A

Task A

Task B

Task B

Task C

Task C

 deadline period

Task A

Task A

Task B

Task B

Task C

Task C

Task A

Task A

Task A

A: P00 = P01
B: P10 = P11
C: P20 = P21

A: P00 = P01
A: P00 = P10
A: P01 = P10

A: P00 <> P01
B: P10 = P11
C: P20 = P21

60th IFIP WG 10.4 Meeting

1 mismatch

No mismatch
in TMR

I/O core

P00

P01

P10

P11

P20

P21

Task A

Task A

Task B

Task B

Task C

Task C

 deadline period

Task A

Task B

Task B

Task C

Task C

Task A

Task A

Task A

Task A

A:P01 = P10

B: P10 = P11
C: P20 = P21

A: P00 <> P01
B: P10 = P11
C: P20 = P21

A: P00 <> P01
A: P00 <> P10
A: P01 = P10

time

Fault location mechanism
�  Permanent fault operation

�   The deadline period is assumed to be enough long to
execute three tasks sequentially
 Performance degradation does not occur

2011.07.04 15 60th IFIP WG 10.4 Meeting

1 mismatch

2 mismatches
in TMR

Fault location mechanism
�  Features

�  Require at most three sequential task
executions in the deadline period in order to
diagnose the type of faults and identify a
faulty processor core

�  Transient faults can be completely masked
without performance overhead

�  The entire system can achieve graceful
degradation
�   In the successful case, it can be allowed that N

processor cores get failed in a 2N core NoC-based
MPSoC

2011.07.04 16 60th IFIP WG 10.4 Meeting

Static task allocation method
�  The number of tasks is larger than 3,

various configurations can be considered
�  Ex. 6 tasks; task A,B,C,D,E, and F

1) 6-cyclic

2) 3-cyclic x2

3) 2-cyclic x3

2011.07.04 17

P00

P01

A,B

A,B

P10

P11

B,C

B,C

P20

P21

C,D

C,D

P30

P31

D,E

D,E

P40

P41

E,F

E,F

P50

P51

F,A

F,A

P00

P01

A,B

A,B

P10

P11

B,C

B,C

P20

P21

C,A

C,A

P30

P31

D,E

D,E

P40

P41

E,F

E,F

P50

P51

F,D

F,D

P00

P01

A,B

A,B

P10

P11

B,A

B,A

P20

P21

C,D

C,D

P30

P31

D,C

D,C

P40

P41

E,F

E,F

P50

P51

F,E

F,E

Coarse-
grain

Fine-
grain

60th IFIP WG 10.4 Meeting

Evaluation (1)
�   Research question: How to statically allocate

tasks to each private memories in order to
improve performance?
�   Coarse-grain configuration?
�   Fine-grain configuration?

�   The performance improvement is evaluated
using MTTF (Mean Time To Failure)

2011.07.04 18 60th IFIP WG 10.4 Meeting

Comparison result (1)
�   No memory faults, 6 tasks
�   The failure rate of a processor core: λ

 Fine-grain (2-cyclic) configuration is effective!

2011.07.04 19

Configurationn System MTTF
6-cyclic 0.511 / λ
3-cyclic x 2 0.507 / λ
2-cyclic x 3 0.596 / λ

60th IFIP WG 10.4 Meeting

Static task allocation method
�   When P10 and P11 get failed
�   Cyclic-6

�   Cyclic-3 x2

�   Cyclic-2 x3

2011.07.04 20

P00

P01

A,B

A,B

P10

P11

B,C

B,C

P20

P21

C,D

C,D

P30

P31

D,E

D,E

P40

P41

E,F

E,F

P50

P51

F,A

F,A

P00

P01

A,B

A,B

P10

P11

B,C

B,C

P20

P21

C,A

C,A

P30

P31

D,E

D,E

P40

P41

E,F

E,F

P50

P51

F,D

F,D

P00

P01

A,B

A,B

P10

P11

B,A

B,A

P20

P21

C,D

C,D

P30

P31

D,C

D,C

P40

P41

E,F

E,F

P50

P51

F,E

F,E

60th IFIP WG 10.4 Meeting

Static task allocation method
�   When P10,P11, P30,P31 get failed
�   Cyclic-6

�   Cyclic-3 x2

�   Cyclic-2 x3

2011.07.04 21

P00

P01

A,B

A,B

P10

P11

B,C

B,C

P20

P21

C,D

C,D

P30

P31

D,E

D,E

P40

P41

E,F

E,F

P50

P51

F,A

F,A

P00

P01

A,B

A,B

P10

P11

B,C

B,C

P20

P21

C,A

C,A

P30

P31

D,E

D,E

P40

P41

E,F

E,F

P50

P51

F,D

F,D

P00

P01

A,B

A,B

P10

P11

B,A

B,A

P20

P21

C,D

C,D

P30

P31

D,C

D,C

P40

P41

E,F

E,F

P50

P51

F,E

F,E

60th IFIP WG 10.4 Meeting

Evaluation (2)
�   Comparison targets

a) Duplicated task allocation

�   Each task can be performed by only two processor
cores to compare their results
 If a permanent fault occurs, the whole system gets
failed immediately

b) Triplicated task allocation
�   The basic operation is the same as
the proposed quadruplicated system

�   In the retry-and-decision phase, compose a TMR and
identify the faulty core
 If the second permanent fault occurs in the remaining
pairs, the whole system gets failed

2011.07.04 22

P11 P21

P00 P10 P20

P01

Task A Task B Task C

Task A Task B Task C

P01 P11 P21

P00 P10 P20

Task A Task B Task C

Task A,B Task B,C Task C,A

60th IFIP WG 10.4 Meeting

Comparison result (2)
�  No memory faults, 6 tasks
�  The failure rate of a processor core: λ

�  The MTTF of quadruplicated system is over 7
times longer than duplicated system while
the amount of memory is only twice

2011.07.04 23

Coonfiguurraattiioon Syysstteemm MTTTTF
Duplicated 0.0833/λ (1.00)
Triplicated (2-cyclic x3) 0.311/λ (3.73)
Quadruplicated (2-cyclic x3) 0.596/λ (7.15)

60th IFIP WG 10.4 Meeting

Comparison result (2)
�   Scalability

�   The ratio of MTTF to the duplicated configuration

�   The proposed quadruplicated static task allocation
method is effective as the number of tasks increases

2011.07.04 24

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7

R
el

at
iv

e
M

T
T

F
to

 (
a)

D
up

lic
at

ed
 s

ys
te

m

of tasks

(a)Duplicated
(b)Triplicated

Quadruplicated

60th IFIP WG 10.4 Meeting

Chip implementation
�   Using 130nm process technology

�   We are now testing and evaluating this chip
2011.07.04 60th IFIP WG 10.4 Meeting 25

10m
m

V850E CPU
cores x8

I/O cores

Conclusion
�   We have proposed a processor-level fault tolerance

technique for NoC-based MPSoCs where each processor
core has its small private memory
�   Each task is quadruplicated and statically assigned to

private memories so that each memory has only two
different tasks and fine-grain task pairs can be composed

�   We have evaluated the MTTF of the proposed task
allocation method
�   The MTTF is over 4.3 times longer than that of the

duplicated task allocation
�   It is more effective as the number of simultaneously

executed tasks increases

2011.07.04 26 60th IFIP WG 10.4 Meeting

