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Background 
�   VLSI technology scaling 

 The performance improvement of a single processor is limited 
due to clock skew, power dissipation, ILP, and complexity 

�   CMP (Chip Multi-Processor) and MPSoC (Multiple-
Processor System-on-a-Chip)  
�   Promising architecture, not only for high performance but also 

for dependability 
�   Even if a processor core becomes faulty, the remaining cores can 

continue to operate 
�   A simple bus architecture does not scale with the system 

size as the bandwidth is shared by all the cores attached it 
�   On-chip network is a feasible solution to many-core 

systems 
 Focus on NoC-based multiple processor core architecture 
�   “Dependable Network-on-Chip Platform” project funded by CREST 

@JST (Japan Science and Technology Agency) 
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Target applications 
�   Automotive engine control 

�   Various periodic tasks control 
actuators in response to the 
corresponding sensor inputs in a 
deadline period (ex. 4msec) 

�   Conventional methods 
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Target applications 
�   Automotive engine control 

�   NoC-based MPSoC approach 
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Task allocation and scheduling 
�   Task allocation and scheduling method is a main 

issue for performance optimization 
�   Dynamic task allocation methods 

 [E.Carvalho,RSP07][C.L.Chou,DATE08][T.Wei,ISQED10]
 [K.Lakshmanan,RTSS10]… 

�   Static task allocation methods 
 [J.Hu,Trans.CAD05][C.Marcon,ASP-DAC05] … 

�   These allocation methods depend on memory 
architecture in on-chip networks 
�   Single shared memory 
�   Multiple private memories 
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Task allocation and scheduling 
�   Single shared memory 

�   All the processor cores can perform all the tasks 
�   Requires a high speed memory interface and a 

mechanism to keep cache coherence 
 Not suited for embedded systems like automotive 
control systems  
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Task allocation and scheduling 
�   Multiple private memories 

�   Mechanism is very simple 
�   Each processor core can only perform a restricted 

number of tasks 
 Suited for embedded systems   
�   The amount of tasks in embedded systems is small  
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Objectives 
�   Target system: NoC-based MPSoC system 

where each processor core has its small private 
memory 

�   Propose an effective static task allocation 
method in order to improve the dependability of  
target systems 
�   Each task is quadruplicated and statically assigned to 

private memories   
�   The performance improvement is evaluated using 

MTTF (Mean Time To Failure) 
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NoC-based MPSoC 
�  Architecture overview 

�   2D mesh NoC 

�   I/O cores connect to routers where y=2 
�  Gather sensor inputs and assign tasks to processor 

cores 
�   Processor cores connect to routers where y=0,1 

�   Each processor core has its private memory 
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Fault model 
�   Single-core fault model 

�   A fault is only capable of occurring in a single 
processor core of an NoC-based MPSoC at any one 
moment in time 

�   Permanent fault 
�   We must identify the faulty core and stop using it 

�   Transient fault 
�   The core in which a transient fault occurs can be 

recovered by re-executing from the latest checkpoint 
 We do not have to stop using it immediately 

�   There is no fault in I/O cores 
(For simple evaluation in this presentation) 
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Fault detection and recovery 
�   Several studies have been made using CMPs to detect 

faults and recovery  
�   mSWAT: software-based HW and SW fault detection and 

diagnosis method 
�   DCC (Dynamic Core Coupling): processor-level fault tolerance 

technique 
�   Employ a TMR using hot spares in order to isolate a failure core 

and recovery its task 
�   Pair & Swap: processor-level fault tolerance technique 

�   Pair phase: replication and comparison 
�   Swap phase: swap and retry (retry and decision) 

�   etc, …… 

�   In this research, fault detection and recovery are 
performed based on the pair & swap scheme 
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Basic mechanism 
�   Proposal: Each task is quadruplicated and 

statically assigned to private memories so that 
each private memory has only two different 
tasks 
�   Ex. 6 core system 
�   Task A, B, and C 

�   Task A can be performed by  
P00,P01, P10,P11 
�   Task B: P10,P11, P20,P21 
�   Task C: P20,P21, P00,P01 

2011.07.04 12 60th IFIP WG 10.4 Meeting

P01

P00

P11

P10

P21

P20

Task C,A Task A,B Task B,C

I/O core

Task C,A Task A,B Task B,C

outside of a chip

sensor/actuator sensor/actuator sensor/actuator

�   Compose three pairs in 
order to detect faults by 
comparison of 
computation results 



Basic mechanism 
�   Non faulty operation 
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Fault location mechanism 
�  Transient fault operation 
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Fault location mechanism 
�  Permanent fault operation 

�   The deadline period is assumed to be enough long to 
execute three tasks sequentially 
 Performance degradation does not occur 
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Fault location mechanism 
�  Features 

�  Require at most three sequential task 
executions in the deadline period in order to 
diagnose the type of faults and identify a 
faulty processor core 

�  Transient faults can be completely masked 
without performance overhead 

�  The entire system can achieve graceful 
degradation 
�   In the successful case, it can be allowed that N 

processor cores get failed in a 2N core NoC-based 
MPSoC 

2011.07.04 16 60th IFIP WG 10.4 Meeting



Static task allocation method 
�  The number of tasks is larger than 3, 

various configurations can be considered 
�  Ex. 6 tasks; task A,B,C,D,E, and F 

1) 6-cyclic 

2) 3-cyclic  x2 

3) 2-cyclic  x3 
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Evaluation (1) 
�   Research question: How to statically allocate 

tasks to each private memories in order to 
improve performance? 
�   Coarse-grain configuration? 
�   Fine-grain configuration? 

�   The performance improvement is evaluated 
using MTTF (Mean Time To Failure) 
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Comparison result (1) 
�   No memory faults, 6 tasks 
�   The failure rate of a processor core: λ 

 Fine-grain (2-cyclic) configuration is effective! 
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Configurationn System MTTF 
6-cyclic 0.511 / λ 
3-cyclic x 2 0.507 / λ 
2-cyclic x 3 0.596 / λ 
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Static task allocation method 
�   When P10 and P11 get failed 
�   Cyclic-6 

�   Cyclic-3 x2 

�   Cyclic-2 x3 
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Static task allocation method 
�   When P10,P11, P30,P31 get failed 
�   Cyclic-6 

�   Cyclic-3 x2 

�   Cyclic-2 x3 
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Evaluation (2) 
�   Comparison targets 

a) Duplicated task allocation 

�   Each task can be performed by only two processor 
cores to compare their results 
 If a permanent fault occurs, the whole system gets 
failed immediately 

b) Triplicated task allocation 
�   The basic operation is the same as 
the proposed quadruplicated system 

�   In the retry-and-decision phase, compose a TMR and 
identify the faulty core 
 If the second permanent fault occurs in the remaining 
pairs, the whole system gets failed 
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Comparison result (2) 
�  No memory faults, 6 tasks 
�  The failure rate of a processor core: λ 

�  The MTTF of quadruplicated system is over 7 
times longer than duplicated system while 
the amount of memory is only twice 
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Coonfiguurraattiioon  Syysstteemm  MTTTTF  
Duplicated 0.0833/λ  (1.00)
Triplicated (2-cyclic x3) 0.311/λ  (3.73)
Quadruplicated (2-cyclic x3) 0.596/λ  (7.15)
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Comparison result (2) 
�   Scalability 

�   The ratio of MTTF to the duplicated configuration 

�   The proposed quadruplicated static task allocation 
method is effective as the number of tasks increases 
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Chip implementation 
�   Using 130nm process technology 

�   We are now testing and evaluating this chip 
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Conclusion 
�   We have proposed a processor-level fault tolerance 

technique for NoC-based MPSoCs where each processor 
core has its small private memory 
�   Each task is quadruplicated and statically assigned to 

private memories so that each memory has only two 
different tasks and fine-grain task pairs can be composed 

�   We have evaluated the MTTF of the proposed task 
allocation method 
�   The MTTF is over 4.3 times longer than that of the 

duplicated task allocation 
�   It is more effective as the number of simultaneously 

executed tasks increases 
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