

Research Report

My Recent Events and Activity on IEC 61508

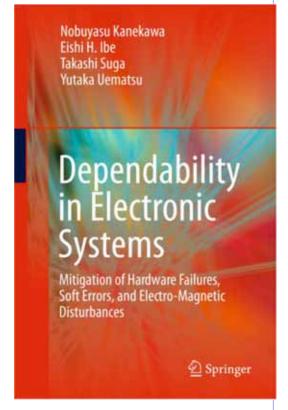
2011/07/04

Nobuyasu Kanekawa Hitachi Research Laboratory, Hitachi, Ltd.

- 1. New Book Published
- 2. Earthquake on 11 Mar., 2011
 Absence from IFIP TC. 10. Meeting
- 3. IEC 61508 Ed. 2.0 Issued

- 1. New Book Published
- 2. Earthquake on 11 Mar., 2011
 Absence from IFIP TC. 10. Meeting
- 3. IEC 61508 Ed. 2.0 Issued

New Book Published


Contents

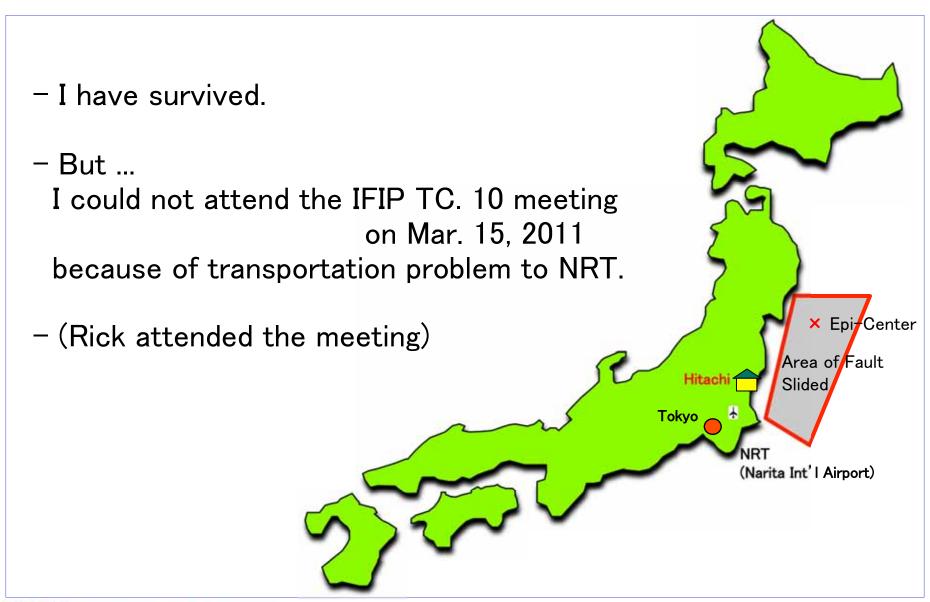
- 1. Introduction
- 2. Terrestrial Neutron-Induced Failures Semiconductor Devices and Relevant Systems and Their Mitigation Techniques
- 3. Electromagnetic Compatibility

Hitachi Research Laboratory

- 4. Power Integrity Design
- 5. Fault-Tolerant System Technology

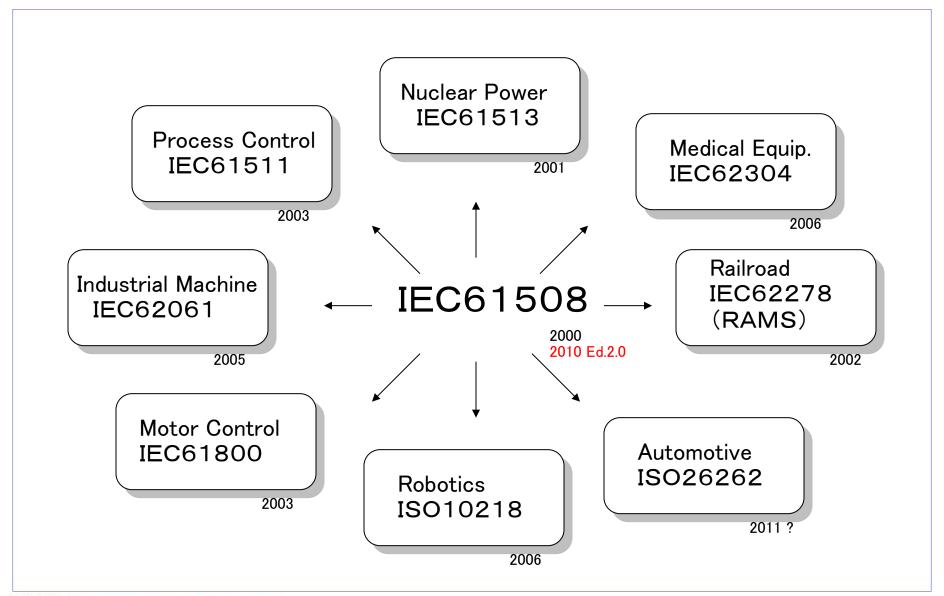
Presented yesterday.

ISBN 978-1-4419-6714-5



- 1. New Book Published
- 2. Earthquake on 11 Mar., 2011
 Absence from IFIP TC. 10. Meeting
- 3. IEC 61508 Ed. 2.0 Issued

Earthquake on Mar. 11, 2011



- 1. New Book Published
- 2. Earthquake on 11 Mar., 2011
 Absence from IFIP TC. 10. Meeting
- 3. IEC 61508 Ed. 2.0 Issued

Functional Safety Standards

SIL (Safety Integrity Level)

(a) low demand mode of operation

Safety Integrity Level (SIL)	Average probability of a dangerous failure on demand of the safety function
4	$\geq 10^{-5} \text{ to} < 10^{-4}$
3	$\geq 10^{-4} \text{ to} < 10^{-3}$
2	$\geq 10^{-3} \text{ to} < 10^{-2}$
1	$\geq 10^{-2} \text{ to} < 10^{-1}$

(b) high demand mode of operation or continuous mode of operation

Safety Integrity Level (SIL)	Average frequency of a dangerous failure of the safety function [h ⁻¹]
4	$\geq 10^{-9} \text{ to} < 10^{-8}$
3	$\geq 10^{-8} \text{ to} < 10^{-7}$
2	$\geq 10^{-7} \text{ to} < 10^{-6}$
1	$\geq 10^{-6} \text{ to} < 10^{-5}$

IEC 61508 Ed. 2.0 Interpretation

(0) Interpretation on $\beta_{\rm IC}$ in IEC61508 Ed. 2.0 Part 2 Annex E

(Special Requirements for ICs with On-Chip Redundancy)

Initial Value: $\beta_{\rm B-IC}$ =33%

- → add according to Table E.1
- → subtract according to Table E.2
- \rightarrow if $\beta_{\rm IC}$ < 25% then SIL 3

Annex D:

 $\beta_{\rm IC}$: Ratio of undetectable failures by CCF (Common Cause Failure)

$$\lambda_{\text{D-CCF}} = \beta_{\text{IC}} \cdot \lambda$$
 where,

 $\lambda_{\text{D-CCF}}$: Failure rate of undetectable failures by CCF,

 λ : Failure rate of the item.

Failure rate of the Chip $\lambda = 400$ [fit]

Dangerous failure rate for SIL 3 $\, \lambda_{\, \mathrm{D-CCF}} \, < 10^{-7} [\mathrm{hr.^{-1}}]$

 $\beta_{\rm IC}$ < 0.25 according to eq. (1)

Proposals for IEC 61508 Ed. 3.0

(1) Upper bound of $eta_{
m IC}$

Failure rate of the Chip λ is not always be 400 [fit]

Failure rate of the Chip
$$\lambda$$
 = 200 [fit]
Dangerous failure rate for SIL 3 $\lambda_{\rm D-CCF}$ < 10⁻⁷[hr.⁻¹] \rightarrow $\beta_{\rm IC}$ < 0.5

Failure rate of the Chip
$$\lambda$$
 < 100 [fit] — $\beta_{IC} = 1.0$ Dangerous failure rate for SIL 3 λ_{D-CCF} < $10^{-7}[hr.^{-1}]$

proposal

Upper bound of $eta_{
m IC}$ shall be determined according to failure rate of the Chip λ ?

Proposals for IEC 61508 Ed. 3.0

(2) Others

Ed. 2.0 Part 2 Annex E mainly lists

Physical Protection Countermeasures (Signal Net Separation, Power Supply/GND Separation, etc.) to guarantee Independence of Redundant Channels in a Chip.

Logical, Code-Theoretical Countermeasures (Redundant Codes, Alternative Codes, Specially Modulated Signals, etc.) should be added.

Many things to be improved.

