BackTrack: Diagnosing Hardware Faults using Software Techniques

Layali Rashid Jiesheng Wei **Karthik Pattabiraman** Sathish Gopalakrishnan

Motivation: Intermittent Faults

Intermittent faults are increasing in processors [Constantinescu'07][Sohi'08][Nightingale'11]

Diagnosis: Overview

Motivation: Why Diagnose ?

Enable fine-grained recovery techniques
 Increase the number of usable cores

Motivation: Why Software-based ?

- Low power and performance overheads during fault-free operation – light-weight
- No need for hardware changes **compatible**
- No need to run tests or special diagnostics
 Only diagnose faults that cause appln. failures

Outline

- Motivation
- Fault model
- Approach
- Results
- Conclusions

Fault Model

• Single **signal** in processor experiences **stuck-at** zero/one fault for a **specific time** duration

Spatial characterization

Temporal characterization

Fault-Injection Study: Major Findings

Of the intermittent faults that are non-benign,95% result in a program crash

□More than 90% of the faults cause program to crash within 500 instructions from the fault

Outline

- Motivation
- Fault model
- Approach
- Results
- Conclusions

Pre-Diagnosis (faulty core)

Approach

Crash D ump File (register file, memory footprint, PC and instruction counter), Program Inputs, Non-deterministic data Diagnosis Procedure (fault-free core)

Failure/ Error Detection Identify first affected instructions due to the intermittent fault

Intermittent Fault Defective unit

Nodes \rightarrow Instructions. Edges \rightarrow Dependencies

Assume intermittent fault affects nodes 5, 6, 7, 8.

Nodes 5, 6, 8, 14 \rightarrow Strong clues

Nodes 1, 12 \rightarrow Weak clues

Nodes 1, 7, 9, 12 \rightarrow Weak clues

Nodes 5, 6, 7, 8, 9 \rightarrow Diagnosis solution Nodes 5, 6, 7, 8 \rightarrow Original fault

Outline

- Motivation
- Fault model
- Approach
- Results
- Conclusions

Experimental Setup

□Siemens programs (100 – 1000 lines of code) □Fault-injection in the SimpleScalar simulator

BackTrack: Evaluation of Accuracy

- Number of additional solutions found
 - If multiple solutions, choose random one to compare with
- Number of "missed" and "superfluous" instructions
 - Missed instructions = Fault nodes Solution nodes
 - Superfluous instructions = Solution nodes Fault nodes

BackTrack: Additional Solutions

□ 87% of the diagnosed faults have NO additional solutions.

□ 96% of the diagnosed faults have fewer than SEVEN solutions

BackTrack : Superfluous & Missed Instructions

□74% of the solutions have at most two missed or two superfluous instructions

Outline

- Motivation
- Fault model
- Approach
- Results
- Conclusions

BackTrack: Conclusions

□Software-only techniques can be effective for diagnosing intermittent hardware faults

□Can diagnose most intermittent faults uniquely to within two instructions

Generation Future Work

□ Isolate defective units based on statistical analysis □ Improve the accuracy of the diagnosis procedure

Consider larger programs and other fault types

BACKUP SLIDES

Results: Limits of Software Diagnosis

□ Few registers are overwritten before a failure → The data corrupted in a program by an intermittent fault is mostly intact

Implications for Diagnosis

- Of the intermittent faults that are non-benign,
 95% result in a program crash
 Focus on crash-causing errors for diagnosis
- More than 90% of the faults cause program to crash within 500 instructions of the fault
 Fault propagation is limited in programs
 Most of the fault's evidence is intact after crash