Flikker: Saving DRAM Refresh Power through Critical Data Partitioning

Karthik Pattabiraman,

with Song Liu,
Thomas Moscibroda,
Benjamin Zorn

Motivation: Smartphones

Smartphones becoming ubiquitous

DRAM Memory consumes up to 30% of power

Responsiveness is important

Can drain the battery even when idle

Motivation: DRAM Refresh

If software is able to tolerate errors, we can lower DRAM refresh rates to achieve considerable power savings

Flikker: Approach

Critical / non-critical data partitioning

Mobile applications have substantial amounts of non-critical data that can be easily identified by application developers

Flikker: Hardware Implementation

- Divide memory bank into high refresh part and low refresh parts
- Size of high-refresh portion can be configured at runtime
- Small modification of the Partial Array Self-Refresh (PASR) mode

Flikker: Software Implementation

Minor changes to the memory allocator and the Operating System (OS)

Evaluation: Mobile Applications

- mpeg2 (video decoding)
- c4 (connect 4, four-in-a-row)
- rayshade (ray-traced images)
- vpr (Stochastic optimization)
- parser (Natural-language processing)

Application	No. of lines	Input	Metric
mpeg2	10.0k	mei16v2.m2v	output SNR
c4	6.1k	N/A	saved moves
rayshade	24.2k	balls.ray	output SNR
vpr	24.6k	ref/test	output file
parser	11.5k	ref/test	output file

Evaluation: Summary

- Performance overhead: < 1 % (real system)
- Power savings (evaluated using simulation)
 - 30 to 35% of standby power reduction
 - 20-25% of overall DRAM power reduction
- Reliability (evaluated using fault-injection)
 - No effect for c4, vpr, and parser applications
 - But crashes and incorrect outputs occur without Flikker
 - Some degradation of SNR for mpeg2 and ray-shade
 - SNR reduced from over 100 dB to 78.9 db for Rayshade
 - SNR reduced marginally for the mpeg2 decoder

Rayshade: Degraded SNR

Original

78.9dB

2 X Zoom

Flikker: Summary

- First software technique to intentionally lower hardware memory reliability for energy savings
 - Minimal changes to hardware based on PASR mode
 - Minor changes to applications to identify critical data
- Reduced the overall DRAM memory power by 20-25% with negligible loss of performance and reliability across five mobile applications
- Future work: Extension to data center applns.

The "Good Enough" Revolution

Source: WIRED Magazine (Sep 2009) – Robert Kapps

http://www.wired.com/gadgets/miscellaneous/magazine/17-09/ff_goodenough

People prefer "cheap and good-enough" over "costly and near-perfect"

Can we design dependable systems with this principle?

More Information ...

See our upcoming paper at ASPLOS'2011
 http://synergy.ece.ubc.ca/karthik/

Flikker: Saving DRAM Refresh Power through Critical Data Partitioning,

Song Liu, Northwestern University
Karthik Pattabiraman, Univ of British Columbia
Thomas Moscibroda, Microsoft Research
Benjamin Zorn, Microsoft Research

Flicker: Related Work

- Better-Than-Worst-Case (BTWC) design
 - Razor [Austin'04]: Save processor power
- Reduce refresh rate and handle faults in leaky rows
 - Do not use faulty rows [ESKIMO Micro'09]
 - Refresh different rows at different rate
 [Kim TVLSI'03] [Venkatesan HPCA'06]
 - Only refresh necessary rows [Ghosh MICRO'07]
 - Use ECC [Katayama DFT'99]

Motivation: Hardware Memory Errors

- Memory elements are susceptible to soft-errors (cosmic ray strikes, alpha particles etc.)
- Variation in retention times among DRAM cells
 - Anywhere from a few milli-seconds to a few seconds

Figure from [Venkatesan'06]

Flikker: Configurations

	code	stack	global	heap
baseline				
	code	stack	global	heap
conservative				
	code	stack	global	heap
ideal				
	code	stack	global	heap
aggressive				
	code	stack	global	heap
crazy				

Flikker: Power Reduction

- Standby power: analytical model
- Overall power: analytical model, simulation, usage profile (5% active, 95% standby) [Karlson et.al, 2009]

parser

Fault-injection Result: 1s refresh

- Output stats (1000 executions): perfect, degraded, failed
- c4: always perfect outputs
- mpeg2, rayshade: some degraded in aggressive and crazy
- vpr, parser: some failed in aggressive and crazy

Fault-injection Result: SNR

- Signal-to-Noise-Ratio (SNR): the ratio of signal energy and noise energy
- SNR is logarithm scale: 3dB means double in energy
- mpeg2 encoder -> decoder: 35 dB
- Flicker yields very high SNR

Configuration	mpeg2	rayshade
conservative	95.48	101.1
aggressive	88.34	72.84
crazy	88.04	73.63

Average SNR of degraded output of mpeg2 and rayshade [dB].

Rayshade Output with Different SNR

Original

78.9dB

41.3dB