
Diagnosing Production-Run
Failures Via White, Gray, Black

Box Approaches

Yuanyuan (YY) Zhou

Dept. of Computer Science and Engineering
University of California, San Diego

yyzhou@cs.ucsd.edu
http://www.cs.ucsd.edu/~yyzhou

Collaboration with Ding Yuan, Weihang Jiang, Soyeon Park, Jing Zheng
& Shankar Pasupathy, Arkady Kanevsky @NetApp

Yuanyuan (YY) Zhou

Dept. of Computer Science and Engineering
University of California, San Diego

yyzhou@cs.ucsd.edu
http://www.cs.ucsd.edu/~yyzhou

Collaboration with Ding Yuan, Weihang Jiang, Soyeon Park, Jing Zheng
& Shankar Pasupathy, Arkady Kanevsky @NetApp

My Zigzag road in Diagnosis

My Assumption/Apology

Joseph Tucek CS-UIUC
Page 3

  My talk focuses on diagnosing of a single piece of
software system from vendors’ customer support
point of view

  Mostly servers, not distributed systems, or clouds
  Mostly experimental, no formula

  So pls don’t shoot me…

4

Once upon an opportunity…

Hardware Fault
(disk, shelf, etc)

Software Bugs

Misconfiguration

User Knowledge

Customer
Environment

  Data source: NetApp 3 years of customer issues (636,108 cases)
  Hardware fault (40%) and misconfiguration (21%) are the two most frequent

categories, software bugs count for a small percentage(3%).
  User knowledge (11%) and customers’ own execution environment (9%)
  More details in our joined FAST’09 paper

5

Problem category and
troubleshooting time

  Software bugs take much longer time to troubleshoot.
  For all categories, troubleshooting is time-consuming

Troubleshooting is expensive!

  Costly downtime for customers
  Cost a customer 18.35% of TCO [Crimson ’07]

  Expensive support cost for vendors
  Vendors devote more than 8% of total revenue and
15% of total employee costs on customer problem
support [ASP’08]

  Clouds further worse the problem

6

Vendor Support Costs

  Other costs
  Customer satisfaction and competitiveness
  Interruption to on-going effort for new product/feature

development

9/3/10 7 Pattern Insight

Company Cost of Service Revenue of Service
NetApp $0.37B $0.573B

EMC $1.7B $2.8B

Cisco $2.6B $6.9B

Juniper $0.31B $0.64B

Oracle $3.9B $4.6B

VmWare $0.21B $0.66B

35% increase/year

* numbers are from 10-K financial reports of these companies

8

Troubleshooting is time-consuming

Data source: NetApp and also in our FAST’09 paper

The source of the pain: Lack of automation

Symptoms,
logs, configs

Problems

Customers Tier-1 SE

Solutions

Escalation

Tier-2 or 3 SE

Write KB article
Knowledge

Base

9/3/10
9

Pattern Insight

•  Labor intensive
•  Long diagnosis time
•  Inaccurate and expensive resolution
•  Not scalable

Reality: Hard to reproduce
Production-run failures

… …
… …

GDB

Failure!!!

Our Zigzag Experience So Far

  White boxes
  Actively collecting more diagnostic
information
  Ex: Triage [SOSP’07], PRES[SOSP’09]

  Gray boxes
  Analyzing logs + source code
  Example: SherLog[ASPLOS’10]

  Black boxes
  Relying on logs alone
  Example: LogMining[FAST’09]

YY. Zhou Department of Computer Science Slide 11

Powerful

Practical &
general

Talk Outline

  Motivation
  Brief overview

 White-Box: Triage [SOSP’07]
 Black-Box: LogMining [FAST’09]

  Gray-box: SherLog [ASPLOS’10]
 A good balance between effectiveness and
practicality

YY. Zhou Department of Computer Science Slide 12

Page 13

Triage: Automatic, On-Site Failure Diagnosis

  Goal:
 Collect as much diagnostic information

  Idea
  Leverage the failure moment
  Relive the failure multiple times via automatic rollback
and re-execution
  Each re-execution with some diagnostic techniques
(slicing) enabled
  Play what-ifs and delta-analysis to narrow down the
possible root causes

Joseph Tucek CS-UIUC
Page 14

Triage Process

Checkpointing Subsystem

Analysis
Tools

(e.g.
backward

slicing, bug
detection)

Control

Unit

(Protocol)

Page 15

Triage Details

  How to get information about the failure?
  Capture the bug with checkpoint/re-execution
  Relive the bug on-site with various diagnostic
techniques

  How to decide what to do?
  Use a human-like protocol to select analysis
  Incrementally increase our understanding of the bug

  How to try out “what-if” scenarios?
  Controlled re-execution allows varied executions
  Delta analysis points out what makes them different

Joseph Tucek CS-UIUC
Page 16

Results – Human Study

  Many results in our paper
  Effectiveness and efficiency using 10 real world failures
in server applications
  Checkpoint overhead

  Human study results
  15 programmers
  Measured time to repair bugs, with/without Triage

  Everybody got core dumps, sample inputs, instructions on how to
replicate, and access to many debugging tools

  Including Valgrind

  3 simple toy bugs, & 2 real bugs

Joseph Tucek CS-UIUC
Page 17

Results – Human study

  For the real bugs, Triage strongly helps
(47%)
 Better than 99.99% confidence that with <
without

Road to Impact?
  We enthusiastically took our solution to
industry

  But they said “interesting….but no” because
 The integration complexity/cost is high
  It require checkpoints at run-time

YY. Zhou Department of Computer Science Slide 18

Common Practice in Industry:
Logging

  Rich logs:
  Apache HTTPD 2.2.2 > 1,700 Logging messages (900
are error messages)

  Log Collections:
  EMC, NetApp, Cisco, Dell collect logs from >50% of
their customers [SANS2009][EMC][Dell]

NetApp are collecting some 40 million log messages a day –
 and emphasized that you can't use people exclusively to process these kinds of volumes.
You need a great tool.
…

Talk Outline

  Motivation
  Brief overview

 White-Box: Triage
 Black-Box: LogMining [FAST’09]

  Gray-box: SherLog
 A good balance between effectiveness and
practicality

YY. Zhou Department of Computer Science Slide 20

Using logs for diagnosis

Case ID Report Date
Resolution/
Workaround

Date
Problem cause

Auto-generated Critical Event
High-level Module-level

1 5/1/06 11:21 5/1/06 13:35 Software Bugs File System Y Crash

2 5/2/06 11:02 5/2/06 9:01 Hardware Fault SCSI N N/A

3 5/3/06 15:40 5/8/06 14:48 Misconfiguration Shelf N N/A

Log

Log

Log
Log

Log

Storage System Log
Archive (306,624 logs)

Customer problem case database (636,108)

Challenges and opportunities

  Logs are noisy

22

Sat Apr 15 05:58:15 EST [busError]: SCSI adapter encountered an unexpected bus phase. Issuing
SCSI bus reset.

Sat Apr 15 05:59:10 EST [fs.warn]: volume /vol/vol1 is low on free space. 98% in use.
Sat Apr 15 06:01:10 EST [fs.warn]: volume /vol/vol10 is low on free space. 99% in use.
Sat Apr 15 06:02:14 EST [raidDiskRecovering]: Attempting to bring device 9a back into service.
Sat Apr 15 06:02:14 EST [raidDiskRecovering]: Attempting to bring device 9b back into service.
 ……
Sat Apr 15 06:07:19 EST [timeoutError]: device 9a did not respond to requested I/O. I/O will be

retried.
Sat Apr 15 06:07:19 EST [noPathsError]: No more paths to device 9a: All retries have failed.
Sat Apr 15 06:07:19 EST [timeoutError]: device 9b did not respond to requested I/O. I/O will be

retried.
Sat Apr 15 06:07:19 EST [noPathsError]: No more paths to device 9b. All retries have failed.
Sat Apr 15 06:08:23 EST [filerUp]: Filer is up and running.
 ……
Sat Apr 15 06:24:07 EST [crash:ALERT]: Crash String: File system hung in process idle_thread1

Single Event revealing problem root cause

Critical Event

Challenges and opportunities

  Logs are noisy
  Important log events are not easy to locate

23

Sat Apr 15 05:58:15 EST [busError]: SCSI adapter encountered an unexpected bus phase. Issuing
SCSI bus reset.

Sat Apr 15 06:24:07 EST [crash:ALERT]: Crash String: File system hung in process idle_thread1

Total of 106 log events

Single Event revealing problem root cause

Critical Event

Challenges and opportunities

Challenges:
  Logs are noisy
  Important log events are not easy to locate

Opportunities:
☺  Similar log patterns appear on systems

experience the same problems

Signature
Matching

Failure Signature Matching

9/3/10
25

(2) Recurring
Problems

Customers

Tier-1 SE

(3) Resolutions

Tier-2 or 3 SE

report

20%

Pattern Search

(1) Import signatures

Percentage of deflected tickets

Signature
Extraction

Failure Signature Extraction

9/3/10
26

(1) Unknown
 Problems

Customers

Tier-1 SE

(4) Resolutions

Tier-2 or 3 SE
(2) Discovered
signatures

report

20%

60%

Pattern Search Pattern Discovery

(3) Refined
signatures

Percentage of deflected tickets

Proof of Concept Results@ a company

9/3/10
27

Coverage > 90%
Accuracy 95% – 100%
Easy to Use 50 – 100 signatures / day inserted
Speed < 5 seconds / search query
Scalability TB of data (1 month of logs)

Company A(manually) Ours
Cost 10 engineers, 3 months 1 PI engineer 3 days
Accuracy -- > 80%
Signatures 13 16
Scalability -- 18000 cases

Signature Matching

* Data from pilot at Netapp

Signature Extraction

Limitations of Log Mining

  Same limitation as other black box
approaches
 Do not take the system internal into
consideration

  Limited by the quality of logs

  So what else can we take advantage
without losing practicality

YY. Zhou Department of Computer Science Slide 28

Talk Outline

  Motivation
  Brief overview

 White-Box: Triage
 Black-Box: LogMining [FAST’09]

  Gray-box: SherLog
 A good balance between effectiveness and
practicality

YY. Zhou Department of Computer Science Slide 29

 Manual Inference with Log + Code

….
removing directory, d1/
d2
ERROR: No such file
or directory

int main (int argc,..)
{
 if (A)
 printf (“removing
directory %s”, p);
 …
}

Follow Complex programming
logic

How did it
happen?

Log Souce Code

?

Tedious, Error prone,
Can’t be carried deep

d1/d2/

Real Failure in rmdir@GNU
Coreutils

  rmdir
  Remove an empty directory
  When –p specified, remove all the parent directory as well!

  Failed to remove parent directory

d1

d2

rmdir -p v
rmdir: removing directory, d1/d2/ [msg 1]
rmdir: removing directory, d1/d2 [msg 2]
rmdir: ‘d1/d2’: No such file or directory
[msg 3]

22 main (argc, argv) {
23 for (; optind < argc; optind++) {
24 char* dir = argv[optind];
25 if (verbose)
26 error (0, 0, _("removing directory, %s”),
 dir);
27
28 fail = rmdir (dir);
29
30 if (fail)
31 error (0, errno, “%s”,
 quote(dir));
32 else if (empty_paths)
33 remove_parents (dir);
34 } //end for
35 } //end main

 

 

 

R1

R2

M1

M2

rmdir: ‘d1/d2’: No such file or directory

rmdir: removing directory, d1/d2/
rmdir: removing directory, d1/d2

Highly Simplified from 18K LOC
Only relevant code.

22 main (argc, argv) {
23 for (; optind < argc; optind++) {
24 char* dir = argv[optind];
25 if (verbose)
26 error (0, 0, _("removing directory, %s”),
 dir);
27
28 fail = rmdir (dir);
29
30 if (fail)
31 error (0, errno, “%s”,
 quote(dir));
32 else if (empty_paths)
33 remove_parents (dir);
34 } //end for
35 } //end main

 

 

 

R1

R2

M1

M2

8 combinations:

M1
M1
R2

22 main (argc, argv) {
23 for (; optind < argc; optind++) {
24 char* dir = argv[optind];
25 if (verbose)
26 error (0, 0, _("removing directory, %s”),
 dir);
27
28 fail = rmdir (dir);
29
30 if (fail)
31 error (0, errno, “%s”,
 quote(dir));
32 else if (empty_paths)
33 remove_parents (dir);
34 } //end for
35 } //end main

 

 

 

R2 M2

8 combinations:

R1
M1

verbose != 0

verbose == 0

M1
M1
R2

22 main (argc, argv) {
23 for (; optind < argc; optind++) {
24 char* dir = argv[optind];
25 if (verbose)
26 error (0, 0, _("removing directory, %s”),
 dir);
27
28 fail = rmdir (dir);
29
30 if (fail)
31 error (0, errno, “%s”,
 quote(dir));
32 else if (empty_paths)
33 remove_parents (dir);
34 } //end for
35 } //end main

 

 

 

R2 M2

8 combinations:

R1
M1

verbose != 0

verbose == 0

Complicated control-
and data-flow

ret.rmdir != 0 && rmdir.c:verbose == 0 &&
(rmdir.c:ignore_fail_on_non_empty == 0 ||
ret.errno_rmdir_non_empty == 0) && (!((int32)
(*slash) == 47) || !(slash > __arg0))

optind < argc && ((1+optind) < argc) && !
(ret.getopt_long != -1) && rmdir.c:empty_paths !
= 0 && rmdir.c:verbose != 0 && ret.rmdir == 0

Other combinations?

Non-Trivial
Manual Effort!

M1
M1
R2

?
? ?

Automatically Infer
Feasible & relevant

Execution Path

Automatically Infer Value
of Key variables

SherLog: Automated Log-Driven Inference

“d1/d2/”

Data-flow of variable “path”

Read “d1/d2/”

Write “d1/d2”

Details in our ASPLOS’10 paper

Production run Logs

Dull material alert

  Time to take a nap!

YY. Zhou Department of Computer Science Slide 37

SherLog Overview

Log

Source
Code

Feasible
Path

Inference

Log
Parser

Value
Inference

Souce Locations;
Log Variable Values

Feasible paths;
Constraints

Variable
Values

Log Parser
  Goal

  Map message to source code location
  Map variable’s value printed in log message

  Parse format string as Regular Expression

Path
Inference

Log
Parser

Value
Inference

error (0, 0, _(“removing direcotry, %s”), path);
Source
Code

Regular Expressions Variable
s

Locatio
n

“removing direcotry,
%s”

path 11

“removing direcotry,
%s”

dir 26 rmdir: removing directory, d1/d2/

path = “d1/d2/”
dir = “d1/d2/”

Provides simple annotation
language for customized logging

3 2 1

Feasible Path Inference
  Goal

  Infer the Control Flow Paths that connects the log
messages

  Problem Formalization
  Sequence Matching problem

rmdir: removing directory, d1/d2/
rmdir: removing directory, d1/d2
rmdir: ‘d1/d2’: No such file or directory

1
2
3

R1: error@11

M1: error@26

R1: error@11

M1: error@26

R2: error@16

M2: error@31

remove_parents

main Log Parser:
Maps to Logging Sites

Feasible paths connect Longest sub-
sequence of the log-site sequence

Path
Inference

Log
Parser

Value
Inference

Challenges
  Scalability vs. Precision

  Path Explosion
  Most of functions irrelevant!

main

R1: error@11

M1: error
@26

R2: error@16

M2: error
@31

get_option rmdir remove_parents

initialize exchange fork exctl

f1 f2

Path
Inference

Log
Parser

Value
Inference

Focus only on relevant
functions,

Analyze them precisely!!!

Solution: Log-Driven Design
  Focus on functions directly/indirectly prints log
messages

  Ancestors of log sites
  Analyze these functions precisely down to bit level

main

R1: error@11

M1: error
@26

R2: error@16

M2: error
@31

get_option rmdir remove_parents

initialize exchange fork exctl

f1 f2

Ancestors of log sites

Can be analyzed on
demand

Path
Inference

Log
Parser

Value
Inference

ret.rmdir == 0
in constraint

Summary Based Analysis

main

R1: error@11

M1: error
@26

R2: error@16

remove_parents

Path
Inference

Log
Parser

Value
Inference

Sub-sequence Constraints
[2, 3]

(R1, R2)
verbose != 0 &&

ret.rmdir && ret.strrchr!=
NULL

Summary

  Each function is analyzed separately
  Only one function’s representation lives in memory
  At call-site of f, only f’s summary is used

Constrained Sequence Matching
  Need to prune infeasible paths

 Conditions along path as constraint formula
 Use SAT solver to prune infeasible paths

remove_parents verbose != 0

main

verbose == 0

verbose != 0 && verbose == 0

R1: error@11

M1: error@26

R1: error@11

M1: error@26

R2: error@16

M2: error@31

1 2 3

Path
Inference

Log
Parser

Value
Inference

Log from multi-threaded program
  First group the messages by common thread ID
  Connects longest-continuous sub-sequence:

  Limitation: Can’t infer across threads

Path
Inference

Log
Parser

Value
Inference

msg 1
T1

msg 2
T2

msg 3
T1

msg 4
T2

msg 5
T1

msg 6
T2

Thread 1 Thread 2

132.239.10.118 - 19248 - [28/Sep/2009:10:51:41 -0500] "CONNECT opera.ucsd.edu:443 HTTP/1.1" 405 235
132.239.10.118 - 19249 - [28/Sep/2009:10:52:00 -0500] "GET http://hq.sinajs.cn HTTP/1.1" 404 241

Apache HTTPD Log

Thread
ID

 

 

 

R1

R2

M1

M2

rmdir: Path Inference

22 main (argc, argv) {
23 for (; optind < argc; optind++) {
24 char* dir = argv[optind];
25 if (verbose)
26 error (0, 0, _("removing directory, %s”),
 dir);
27
28 fail = rmdir (dir);
29
30 if (fail)
31 error (0, errno, “%s”,
 quote(dir));
32 else if (empty_paths)
33 remove_parents (dir);
34 } //end for
35 } //end main

verbose != 0

verbose != 0

SherLog: M1, R1, R2
ret.strrchr !=
NULL

ret.rmdir != 0

ret.rmdir==0 &&
empty_paths!=0

What is the value of
“path”?

Value Inference

  Given a path inferred by Path Inference,
use Symbolic Execution to infer the
variable value
 Scale to large application since the path is
determined

Path
Inference

Log
Parser

Value
Inference

 

 

 

R1

R2

M1

M2

SherLog: M1, R1, R2 What is the value of
“path”?

2. Infers Variable Value
Information! path = “d1/d2/”

path = “d1/d2 ”

path = “d1/d2”

/

dir = “d1/d2/”

Fix: Remove trailing slashes

dir = “d1/d2/”

22 main (argc, argv) {
23 for (; optind < argc; optind++) {
24 char* dir = argv[optind];
25 if (verbose)
26 error (0, 0, _("removing directory, %s”),
 dir);
27
28 fail = rmdir (dir);
29
30 if (fail)
31 error (0, errno, “%s”,
 quote(dir));
32 else if (empty_paths)
33 remove_parents (dir);
34 } //end for
35 } //end main

dir = “d1/d2/”

Implementation

  Built on Saturn static analysis framework
 Models C program semantic precisely
 Precise intra-procedural data-flow

  Write analysis in CALYPSO Logic
Programming Language

Evaluation

SherLog successfully diagnosed all
8 failures!

App. Type #MSG LOC Description

rmdir Bug 3 18K missing to remove trailing slashes with –p option

ln Bug 2 20K missing condition check for –target-directory option

rm Bug 4 23K missing condition check causing –i behaves like -ir

CVS 1 Config 3 148K incorrectly setting the permission for locking directory

CVS 2 Config 2 148K incompatibility between application and config file

HTTPD Bug 1,309 317K incorrectly handles EOF in response stream when set up
as proxy server

Squid Bug 197 69K Treating certain icon files wrongly by not caching them

TAR Bug 2 79K Semantic bug causing tar fail to update a non-existing
tarball

8 Real World Failures Reported by Users

SherLog successfully inferred all
diagnostic information!

More case
studies in

paper!

Server
Applications

Evaluation (cont.)

App.
Log Parser Path Inference

Regex Log Sites # of paths Msgs
rmdir 4 10 2 3 (3)
ln 17 23 1 2 (2)
rm 17 25 1 4 (4)
CVS 1 695 1,173 1 2 (3)
CVS 2 695 1,173 1 1 (2)
HTTPD 997 1,259 1 10 (1,309)
Squid 1,134 1,209 1 108 (197)
Tar 171 228 5 1 (2)

Performance

App.
Parser Path Value
Time Time Memory Time Memory

rmdir 0.02s 2.25m 174 MB 15.54s 116 MB
ln 0.02s 2.32m 194 MB 37.75s 165 MB
rm 0.01s 2.00m 511 MB 38.87s 123 MB

CVS 1 0.32s 39.56m 1,317 MB 188.53s 323 MB
CVS 2 0.19s 38.96m 1,322 MB 39.19s 232 MB
HTTPD 0.67s 28.38m 321 MB 19.23s 217 MB
Squid 0.81s 38.02m 1,520 MB 22.01s 252 MB

Tar 0.08s 6.55m 210 MB 29.14s 155 MB

Related Work
  Core-dump analyzer:

  PSE [ManevichSIGSOFT2004], WER
[GlerumSOSP09]

  Log Analysis:
  statistic techniques: [CohenSOSP05] [XuSOSP09]

[JiangTHESIS09]
  Distributed system Causal path: [AguileraSOSP03]

[BarhamOSDI04]

  Error Diagnosis without error reproduction:
  Program slicer [HorwitzPLDI88] [ChenTACAS09]
  Coorporative Bug Isolation [LiblitPLDI2003] [ChilimbiICSE2009]
  Model checking/symbolic execution: [BallSIGPLAN2003]

[CadarOSDI08]

Limitations

  Assume log messages are relevant to
failure

  Do not infer across thread
  Do not infer across function pointer

  What failures can not benefit from SherLog
 Without log msgs
 With long error propagation

Conclusions & Future Work
  Customer problem troubleshooting is a
critical problem
 Automation is needed and possible

  The next “zigzag”---or an ending hook to be
invited again
 How to write software so it is easy to diagnose?
 More to report next time

YY. Zhou Department of Computer Science Slide 55

YY. Zhou Department of Computer Science Slide 56

57

Troubleshooting time

  Software bugs take longer time to troubleshoot.
  For all categories, troubleshooting is time-consuming.

58

More log events are more useful
How well the signature can uniquely identify cause?
F-score = 2 * Precision * Recall / (Precision + Recall)

Multiple Events 45% Single Event 27% Critical Event 15%

  Critical event alone is not enough.
  Using more log events can bring better accuracy.

