Development of Dependable Network-on-Chip Platform (2)

Tomohiro Yoneda National Institute of Informatics

Masashi I maiAtsushi MatsumotoHiroshi SaitoUniv. of TokyoTohoku Univ.Univ. of Aizu

Goal

- Platform for performing many and various tasks in one chip dependably, efficiently and adaptively
- Demonstration in automotive control system area

Background

- Demands for integrating more and more cores into a chip
 - Eg. Automotive electronic systems
 - More than 50 ECUs are used in an automobile
 - Many problems in connecting them
 - New approach
 - Centralized architecture where many ECUs are contained in one chip

Approach

Network-on-Chip (NoC)

IP:CPU/accelerator core NI: Network Interface R: Router

Approach

First Stage Evaluation Model

2010/6/28 IFIP WG 10.4

Fault model focused

- Degradation (Delay fault)
 - Larger variations in transistor performance
 - process
 - power supply voltage
 - temperature

FO4 delay variation

Trials

- Dual-rail multiplier + Pausable Clock
 Implemented in V850E core
- Asynchronous network-on-chip
 - Fully asynchronous router
 - 2 phase dual-rail data link

Dual-rail Multiplier

2010/6/28 IFIP WG 10.4

Asynchronous Router

- Handling header flits takes longer time
 - Unnecessary slacks are given for the other flits for synchronous routers
 - Those flits can go quickly for asynchronous routers

14

王

2010/6/28 IFIP WG 10.4

Application

- Power train control for Prius like hybrid engine car
 - Gasoline Engine control
 - Torque computation for Engine, Drivemotor, and Dynamo
 - Brake control
 - Battery control
- Simulink model developed with an ECU company

Next Stage models

- Implement stuck-fault tolerance
 - Dependable, deadlock-free, and adaptive routing mechanism for routers
 - Detection mechanism for links, routers, and cores
- Task allocation over NoC
 - Redundant task allocation for faulttolerance
 - Mechanism to guarantee real-time property

立情報学研究所

Deadlock-free dependable routing

cur_x < dst_x, cur_y < dst_y </pre>

