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14 PhD-quaIified researchers (+ 2 open positions)

e 10 graduate researchers (+ open positions)
: e 7 research engineers (+ 4 open positions)
., > e = 10 undergraduate students
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hn exception 06 has ocoured at O0P8:CHIEWEL in WD DIskTSD(OS) +
00001660, This s called from O028:C11B400H In WD vwaltrack(04) +
00000000, It mwy Dhe possible 1o cont ine normal 1y,

« Press oy ey 1o atiesn! o cont rme,
« Press CTRLYALTHRESET to restart your computer, You wmill
lose ary unsaved Inforsstion In all swlicat lons,

Press oy by 1o oont e
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seL4"Microkernel

Core of a Minimal JCB

Small trustworthy foundation

e Fault isolation
e Fault identification
e |P protection

 Modularity

 High assurance components in
presence of other components

.

Untrusted Trusted
Designed for verification

=)=
. small AP q -

Designed for security . seL4 Microkemel
management :
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Model: OKL4 microkernel
e resulting from L4-based research Open Kernel Labs
at NICTA/UNSW

* Open Kernel Labs spun out as
independent company in 2006

Aim: Suitable for-Real-World Use = Je

* deployed in >500 M devices

selL4 API based on L4:

e |IPC
 Threads
* Virtual Memory

e |RQs, exception redirection
e Capabilities (NEW)
e Performance like OKLA4!

© NICTA 2009
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seL4 Requirements

Real-world deployment for many uses
e (General-purpose

e virtual machines

* lightweight environents

* not just a separation kernel
e Performance

e Performance

e Performance l

 C & assembler Verification for functional correctness

* Formal model
* Tractable complexity
e Suitable representation of implementation

© NICTA 2009 7
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Kernel Design for
Verification
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Two Teams

Formal Methods Kernel
Practitioners Developers

The Powe_r of Exterminate All
Abstraction OS Abstractions!

[Liskov 09] [Engler 95]
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Whiteboard

Haskell Formal Formal
Prototype Design Specification
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DeS|gn for.Verification

chedule| (I |
pwitch ((word t)kaSchedulerAction) ¢
(word ti)scheduleriction ResuseCurrentThread:

Reducing Complexity

(word ti)scheduleriction ChooseNevwThread:
eadt )
jchedulerdotion =\ ScedulerActign ResumeCurreatThread;
-

Hardware

] NS Ny

° I I R \~Ii§S@hﬁhsxnxad%¢ﬂD;&
drivers outside kernel rﬁsuxor»"uss R e IR ShCT i HeruneCarpentThreys)

Concurrency
* event-based kernel
* |imit preemption s A\ 5857

9./ Sy S e,
LB TSR

Code ey !
| 4?//{’ \ //'/‘D/!L )"1/ /d Vj}(

—A0 [\ 7

e derive from functional representation

y
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C subs

J I |
switch ((word t)kasScheduleriAction) ¢
(word t)scheduleriction ResuseCurrentThread:

Everything from C standard

(word t)scheduleriction ChoosedNevwThread:
{)!}
ksSchedulerhotion = Schoedulerhctrion ResupeCurrentThread:

BNy
Ve

e including: " e minus:
] ] 85 .

- pointers, casts, pointer arithmetic 'z - goto, switch fall-through
- data types - reference to local variable
- structs, padding : - side-effects in expressions
- pointers into structs : - function pointers (restricted)
- precise finite integer arithmetic : - unions

3

£

 plus compiler assumptions on:

- data layout, encoding, endianess

© NICTA 2009 12
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definition
schedule :: unit s_monad where

schedule = do
Wh at threads «— allActiveTCBs;

thread «— select threads;
switch_to_thread thread
od

- . OR switch_to_idle_thread
Specification

vo.ig

case (word t)ScheduleriAction ChooseNewThread:

chocasThreac():

Proof schedule(void) (
switch ((word t)ksSchedulerAction) {
kaSchedalerAction = Schodulerictica ResuseCurrentThread;

case (word t)SchedulerAction ReswmelurrentThread:
- break;

How ans e

switehToThread(kaSchedulerAction);
ksScheduleriction » Schedulerhotion ResumeCurrentThread;
broak;

© NICTA 2009
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. *conditions apply

O

O Assume correct:

B N -

Specificati

Proof I _

Saturday, 23 January 2010

compiler + linker (wrt. C op-sem)
assembly code (600 loc)
hardware (ARMvG)

cache and TLB management
boot code (1,200 loc)

Assumptions

16



Execution always defined: 5
* no null pointer de-reference ‘3@ 1
* no buffer overflows
* no code injection nd

* no memory leaks/out of kernel memory
* no div by zero, no undefined shift
* no undefined execution

* no infinite loops/recursion

Not implied:

e “secure” (define secure)
e zero bugs from expectation to physical world
e covert channel analysis

© NICTA 2009
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Proof Architecture

S ST R TR LR R e

Specification

Proof

© NICTA 2009 18
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Proof Architecture

Specification

|

|
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Proof Architecture

Access Control Spec ~

definition
schedule :: unit s_monad where
schedule = do

threads <« allActiveTCBs;
SpeCIfICatlon +hread «— celart threade:

sohedule 11 Xarzel ()

Confinement

vo.ic
aschedule(void) (
switeh ((word t)ksSchedulerAction) {
care {(word t)SchedulerAction ResumelurrentThread:
break;

case (word t)ScheduleriAction ChooseNewThread:
chocasThreac();:
kaSchedalerAction = Schedulerictica ResuseCurrentThread;
break;

defanlt: /* BwitchToThrewad »
switehToThread(kaSchedulerAction);
ksScheduleriAction » Schedulerhotiona ResumeCurrentThread;
breoak;

© NICTA 2009
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Common Criteria

EAL1 Informal

EAL2 Informal Informal

EAL3 Informal Informal

EAL4 Informal Informal Informal
EALS Semiformal  Semiformal Informal
EALG Formal Semiformal  Semiformal Informal
EAL7 Formal Formal Formal Informal

|4.verified Formal Formal Formal Formal

© NICTA 2009
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e

Did you find any Bugs?

Bugs found

during testing: 16

during verification:
e inC: 160
* indesign: ~150
* inspec: ~150

460 bugs

© NICTA 2009

Saturday, 23 January 2010

Effort
Haskell design 2 py
First C impl. 2 weeks
Debugging/Testing 2 months
Kernel verification 12 py fead)
Formal frameworks 10 py
Total 25 py

Comparison of approaches
Trad. engineering 4-6
Repeat verification 6

Cost
Common Criteria EALG:
L4.verified:

Fead:;

Py
Py

$60M
$6M

23
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What’s next

24
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Remove limitations

verify assembler code
verify bootstrap code
verify MMU operations
multicore version
verify x86 version
temporal isolation
information flow

© NICTA 2009
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Towards real systems

1 MLoC, legacy components
real-time analysis

power management

25

25



Exploit:

e sel4 isolation

e verified properties

e MILS architectures /
virtualization

© NICTA 2009
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Untrusted Trusted
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-
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Application Areas -

Multilevel Secure Terminal Demonstrator

also:

e automotive

 financial

¢ daerospace
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architecture

Bt Al

whole system
HIUraNce

Chripee - ation setu
S 3) e P '

* Build system with minimal TCB

* Formalize and prove security properties about architecture
= Prove correctness of trusted components

* Prove correctness of setup

© NICTA 2009 28
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Formal proof all the way from specto C

e 200 kLoC handwritten, machine-checked proof, 10 k theorems
e ~460 bugs (160 in C)

e \Verification on code, design, and spec

e Hard in the proof = Hard in the implementation

Formal Code Verification up to 10 kLoC:

It works. | o
It’s feasible. (It’s fun, too...)
It’s cheaper.

© NICTA 2009
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~The Team (Past anPresent) _

© NICTA 2009

June Andronick
Timothy Bourke
Andrew Boyton
David Cock

Jeremy Dawson
Philip Derrin
Dhammika Elkaduwe
Kevin Elphinstone

* |eader, kernel design
Kai Engelhardt

David Greenaway
Lukas Haenel
Gernot Heiser
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Gerwin Klein

» |eader, verification
Rafal Kolanski
Jia Meng
Catherine Menon
Michael Norrish
Thomas Sewell
David Tsai
Harvey Tuch
Michael von Tessin
Adam Walker
Simon Winwood

30

30



Saturday, 23 January 2010

Thank You

|4 verified

I'm Feeling Lucky
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