Qe

NICTA
Formally-Verified OS Kernel

A Basis for Reliable Systems?

Gernot Heiser

Leader, Trustworthy Embedded Systems, NICTA

CTO and Founder, Open Kernel Labs ‘

UNSW 49 =

o
en -

——— . ——— ¢ ——

Saturday, 23 January 2010 1

- e)

14 PhD-quaIified researchers (+ 2 open positions)

e 10 graduate researchers (+ open positions)
: e 7 research engineers (+ 4 open positions)
., > e = 10 undergraduate students

a2 =
- - \:.7.. '*‘. g X o T P 2 fa -
—— : . : TN

Saturday, 23 January 2010 2

hn exception 06 has ocoured at O0P8:CHIEWEL in WD DIskTSD(OS) +
00001660, This s called from O028:C11B400H In WD vwaltrack(04) +
00000000, It mwy Dhe possible 1o cont ine normal 1y,

« Press oy ey 1o atiesn! o cont rme,
« Press CTRLYALTHRESET to restart your computer, You wmill
lose ary unsaved Inforsstion In all swlicat lons,

Press oy by 1o oont e

Saturday, 23 January 2010 3

‘_hwe Problem

seL4"Microkernel

Core of a Minimal JCB

Small trustworthy foundation

e Fault isolation
e Fault identification
e |P protection

 Modularity

 High assurance components in
presence of other components

.

Untrusted Trusted
Designed for verification

=)=
. small AP q -

Designed for security . seL4 Microkemel
management :

© NICTA 2009 5

Saturday, 23 January 2010 5

-

-_— NICTA

Model: OKL4 microkernel
e resulting from L4-based research Open Kernel Labs
at NICTA/UNSW

* Open Kernel Labs spun out as
independent company in 2006

Aim: Suitable for-Real-World Use = Je

* deployed in >500 M devices

selL4 API based on L4:

e |IPC
 Threads
* Virtual Memory

e |RQs, exception redirection
e Capabilities (NEW)
e Performance like OKLA4!

© NICTA 2009

Saturday, 23 January 2010 6

E

o i oy

seL4 Requirements

Real-world deployment for many uses
e (General-purpose

e virtual machines

* lightweight environents

* not just a separation kernel
e Performance

e Performance

e Performance l

 C & assembler Verification for functional correctness

* Formal model
* Tractable complexity
e Suitable representation of implementation

© NICTA 2009 7

Saturday, 23 January 2010

Kernel Design for
Verification

Saturday, 23 January 2010 8

Two Teams

Formal Methods Kernel
Practitioners Developers

The Powe_r of Exterminate All
Abstraction OS Abstractions!

[Liskov 09] [Engler 95]

Saturday, 23 January 2010 9

Whiteboard

Haskell Formal Formal
Prototype Design Specification

© NICTA 2009 10

Saturday, 23 January 2010 10

"b ——

DeS|gn for.Verification

chedule| (I |
pwitch ((word t)kaSchedulerAction) ¢
(word ti)scheduleriction ResuseCurrentThread:

Reducing Complexity

(word ti)scheduleriction ChooseNevwThread:
eadt)
jchedulerdotion =\ ScedulerActign ResumeCurreatThread;
-

Hardware

] NS Ny

° I I R \~Ii§S@hﬁhsxnxad%¢ﬂD;&
drivers outside kernel rﬁsuxor»"uss R e IR ShCT i HeruneCarpentThreys)

Concurrency
* event-based kernel
* |imit preemption s A\ 5857

9./ Sy S e,
LB TSR

Code ey !
| 4?//{’ \ //'/‘D/!L)"1/ /d Vj}(

—A0 [\ 7

e derive from functional representation

y

© NICTA 2009 11

Saturday, 23 January 2010 11

] S

] o

C subs

J I |
switch ((word t)kasScheduleriAction) ¢
(word t)scheduleriction ResuseCurrentThread:

Everything from C standard

(word t)scheduleriction ChoosedNevwThread:
{)!}
ksSchedulerhotion = Schoedulerhctrion ResupeCurrentThread:

BNy
Ve

e including: " e minus:
]] 85 .

- pointers, casts, pointer arithmetic 'z - goto, switch fall-through
- data types - reference to local variable
- structs, padding : - side-effects in expressions
- pointers into structs : - function pointers (restricted)
- precise finite integer arithmetic : - unions

3

£

 plus compiler assumptions on:

- data layout, encoding, endianess

© NICTA 2009 12

Saturday, 23 January 2010 12

\"//4: '/
- »
v 1 4/‘ 1

Fataoy A

'; "" v

N 5 AN '
'u‘ N

T ARY e wy -

ar
>
<
\
)

o
\
N

/‘7; o,

-) v RIN
"!!5///2/ '--'i:;\ AN |
/Rl - A\ - N
A /)7"/// " !i'// % »
: - : X X N/) =

7055 Z S5 S R\
'47;;’7/;,(.‘/2; \'\ \ JEaEY I ‘ - ‘\\i\‘fir
f’/‘.: l 7 “ NS el < e
’/;f})"/“‘! 7\ QA W N S / - lt“;\‘A{

—— Ny

- S I VAV
N VSl A X/

NSZ/

-

-
N\

N

};7"‘ Dt

.27

E,\;\i\v "l,’A
";\‘/‘\"\
VAN

\

))\\‘\" | \\ ,
\$ | |
A \,n“f\ /Ak

Saturday, 23 January 2010 14

definition
schedule :: unit s_monad where

schedule = do
Wh at threads «— allActiveTCBs;

thread «— select threads;
switch_to_thread thread
od

- . OR switch_to_idle_thread
Specification

vo.ig

case (word t)ScheduleriAction ChooseNewThread:

chocasThreac():

Proof schedule(void) (
switch ((word t)ksSchedulerAction) {
kaSchedalerAction = Schodulerictica ResuseCurrentThread;

case (word t)SchedulerAction ReswmelurrentThread:
- break;

How ans e

switehToThread(kaSchedulerAction);
ksScheduleriction » Schedulerhotion ResumeCurrentThread;
broak;

© NICTA 2009

Saturday, 23 January 2010 15

. *conditions apply

O

O Assume correct:

B N -

Specificati

Proof I _

Saturday, 23 January 2010

compiler + linker (wrt. C op-sem)
assembly code (600 loc)
hardware (ARMvG)

cache and TLB management
boot code (1,200 loc)

Assumptions

16

Execution always defined: 5
* no null pointer de-reference ‘3@ 1
* no buffer overflows
* no code injection nd

* no memory leaks/out of kernel memory
* no div by zero, no undefined shift
* no undefined execution

* no infinite loops/recursion

Not implied:

e “secure” (define secure)
e zero bugs from expectation to physical world
e covert channel analysis

© NICTA 2009

Saturday, 23 January 2010 17

Proof Architecture

S ST R TR LR R e

Specification

Proof

© NICTA 2009 18

Saturday, 23 January 2010 18

Proof Architecture

Specification

|

|

19

Saturday, 23 Januar y 2010 19

Proof Architecture

Access Control Spec ~

definition
schedule :: unit s_monad where
schedule = do

threads <« allActiveTCBs;
SpeCIfICatlon +hread «— celart threade:

sohedule 11 Xarzel ()

Confinement

vo.ic
aschedule(void) (
switeh ((word t)ksSchedulerAction) {
care {(word t)SchedulerAction ResumelurrentThread:
break;

case (word t)ScheduleriAction ChooseNewThread:
chocasThreac();:
kaSchedalerAction = Schedulerictica ResuseCurrentThread;
break;

defanlt: /* BwitchToThrewad »
switehToThread(kaSchedulerAction);
ksScheduleriAction » Schedulerhotiona ResumeCurrentThread;
breoak;

© NICTA 2009

Saturday, 23 January 2010 20

Saturday, 23 January 2010 21

Common Criteria

EAL1 Informal

EAL2 Informal Informal

EAL3 Informal Informal

EAL4 Informal Informal Informal
EALS Semiformal Semiformal Informal
EALG Formal Semiformal Semiformal Informal
EAL7 Formal Formal Formal Informal

|4.verified Formal Formal Formal Formal

© NICTA 2009

Saturday, 23 January 2010

22

22

e

Did you find any Bugs?

Bugs found

during testing: 16

during verification:
e inC: 160
* indesign: ~150
* inspec: ~150

460 bugs

© NICTA 2009

Saturday, 23 January 2010

Effort
Haskell design 2 py
First C impl. 2 weeks
Debugging/Testing 2 months
Kernel verification 12 py fead)
Formal frameworks 10 py
Total 25 py

Comparison of approaches
Trad. engineering 4-6
Repeat verification 6

Cost
Common Criteria EALG:
L4.verified:

Fead:;

Py
Py

$60M
$6M

23

?

What’s next

24

Saturday, 23 January 2010

Remove limitations

verify assembler code
verify bootstrap code
verify MMU operations
multicore version
verify x86 version
temporal isolation
information flow

© NICTA 2009

Saturday, 23 January 2010

Towards real systems

1 MLoC, legacy components
real-time analysis

power management

25

25

Exploit:

e sel4 isolation

e verified properties

e MILS architectures /
virtualization

© NICTA 2009

Saturday, 23 January 2010

Untrusted Trusted

-—
- ¥
-

26

26

Application Areas -

Multilevel Secure Terminal Demonstrator

also:

e automotive

 financial

¢ daerospace

Saturday, 23 January 2010 27

architecture

Bt Al

whole system
HIUraNce

Chripee - ation setu
S 3) e P '

* Build system with minimal TCB

* Formalize and prove security properties about architecture
= Prove correctness of trusted components

* Prove correctness of setup

© NICTA 2009 28

Saturday, 23 January 2010 28

Formal proof all the way from specto C

e 200 kLoC handwritten, machine-checked proof, 10 k theorems
e ~460 bugs (160 in C)

e \Verification on code, design, and spec

e Hard in the proof = Hard in the implementation

Formal Code Verification up to 10 kLoC:

It works. | o
It’s feasible. (It’s fun, too...)
It’s cheaper.

© NICTA 2009

Saturday, 23 January 2010

29

~The Team (Past anPresent) _

© NICTA 2009

June Andronick
Timothy Bourke
Andrew Boyton
David Cock

Jeremy Dawson
Philip Derrin
Dhammika Elkaduwe
Kevin Elphinstone

* |eader, kernel design
Kai Engelhardt

David Greenaway
Lukas Haenel
Gernot Heiser

Saturday, 23 January 2010

Gerwin Klein

» |eader, verification
Rafal Kolanski
Jia Meng
Catherine Menon
Michael Norrish
Thomas Sewell
David Tsai
Harvey Tuch
Michael von Tessin
Adam Walker
Simon Winwood

30

30

Saturday, 23 January 2010

Thank You

|4 verified

I'm Feeling Lucky

31

