Top Technical Challenges over the Next Ten Years

Miroslaw Malek Humboldt-Universität zu Berlin

The Permanent Challenge

Dependability is and will remain a key challenge due to:

- Ever-increasing systems complexity
- Ever-growing number of attacks and threats, novice users and third-party or open-source software, COTS
- Growing connectivity and interoperability
- Dynamicity (frequent configurations, reconfigurations, updates, upgrades and patches, ad hoc extensions)
- Systems proliferation to applications in all domains of human activity

Status Quo - Approaches

- Robust development
- Rigorous analysis
- Testing, testing, testing,...
- Fault injection
- → do not scale well up to industrial complexity levels

Promising Direction: Empirical Modeling (learning from systems biology)

Systematic fault injection based on a given fault model, taxonomy or ontology

Runtime monitoring and failure prediction

Dynamic models capable of reconfiguration at runtime

The Challenge of Taming

Complexity

Uncertainty

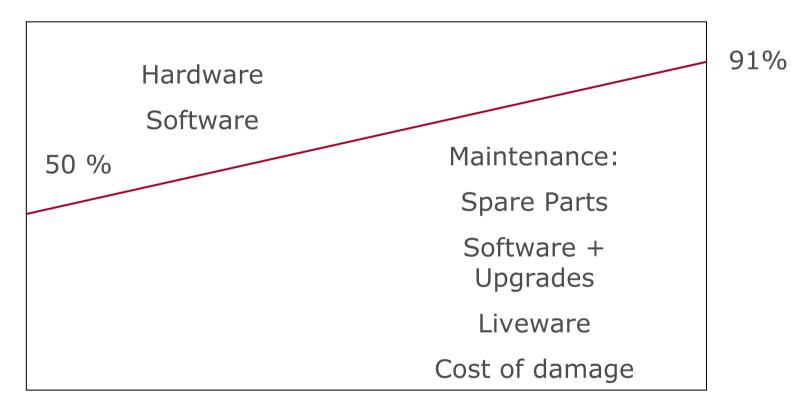
Time

Translucency of Dependability Rings

Each dependability ring should provide measures and mechanisms for dependability/resilience/security (measurement, monitoring, detection, location, prediction, avoidance, testability and recovery)

Proactive Fault Management (1)

- Runtime dependability assessment and evaluation
- Runtime monitoring for online failure prediction and avoidance
- Prediction methods to anticipate resource exhaustion, security breaches or other critical situations
- Predictive diagnosis and fault location as well as rootcause analysis


Proactive Fault Management (2)

- Downtime minimization techniques such as prediction-driven restarts, rejuvenation, adaptive checkpointing, or other predictiondriven enhancements of traditional repair methods
- Downtime avoidance mechanisms such as preventive failover, state-clean up, proactive reconfiguration, failure-prevention driven load balancing
- Benchmarking, domain-specific case-studies, applications, experiments, experience reports
- Proactive maintenance techniques such as monitoring-based replacement, configuration and management of computer systems and components

Proactive Maintenance

5 – 10 years

Summary

- The permanent challenge
- Empirical modeling
- Taming (complexity, uncertainty and time)
- Translucency
- Proactive fault management