Towards a GENeric Embedded System Architecture GENESYS

H. Kopetz June 2008 1

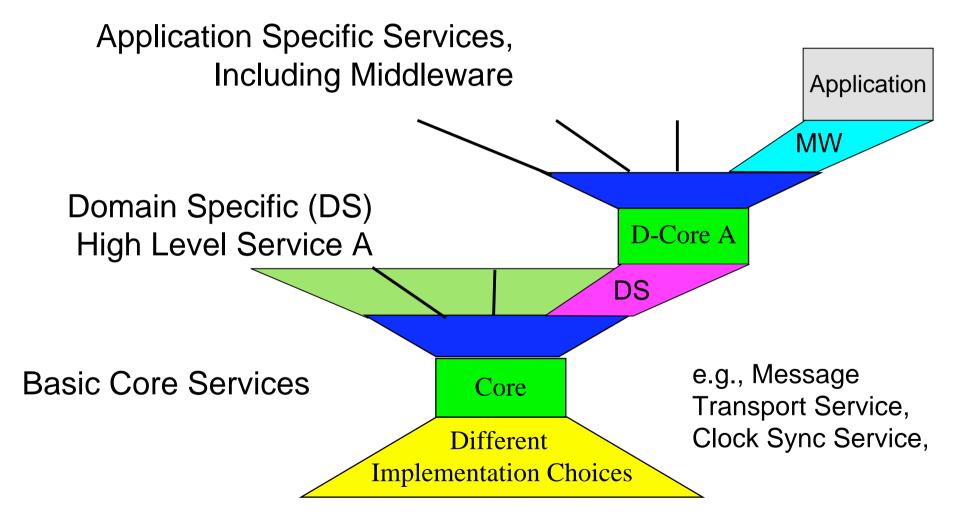
© H. Kopetz 9/19/08

Why a Generic Cross-Domain Architecture?

In the domain of embedded systems, a *cross-domain* approach is needed for many reasons:

- Many issues are the same in different domains (aerospace, automotive, industrial, medical, multi-media, mobile devices):
 - Reuse of Components--Composability
 - Robustness--reduce the fragility of systems
 - Dependability (Security)
 - Energy efficiency (portable devices, heat dissipation)
 - Temporal Predictability
- ♦ Interconnection of Systems from different domains
 - Access your car with a cell phone
 - Multimedia in the car and in control systems
- Economies of Scale of the Semiconductor Industry
- Unified Development Methodology and tools to make better use of the limited human resources

EU funded project to develop a generic-cross domain architecture for embedded system that meets the ARTEMIS requirements:


- Project Partners (23): TU Vienna (Coordinator), Nokia, Infineon, Thales, STMicroelectronics, NXP, Fiat, Volvo, TTTech, Ikerlan, IMEC, et al.
- ♦ Project duration: Jan 08 June 2009

Architectural style has been completed

See:

http://www.genesys-platform.eu/

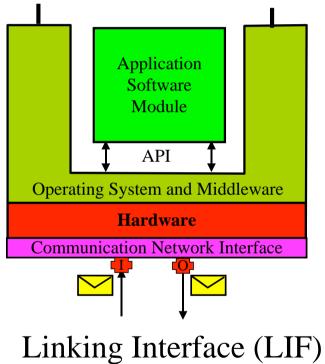
- ♦ Composability
- ♦ Networking and Security
- ♦ Robustness
- ♦ Diagnosis and Maintenance
- ♦ Integrated Resource Management
- ♦ Evolvability
- ♦ Self Organization

If you look at automata which have been built by men or which exist in nature, you very frequently notice that their structure is controlled to a much larger extent by the manner in which they might fail and by the (more or less effective) precautionary measures which have been taken against their failure.

John von Neumann, Theory of Self-Reproducing Automata, Urbana, University of Illinois Press, 1956

Architectural Principles of GENESYS

- *Strict component orientation*: effective fault containment
- Separation of Computation from Communication: Messages
- ♦ *Hierarchical Structure*: Three Integration Levels (complexity)
- ♦ *Common time base* of appropriate precision at all nodes (IP-cores)


7

- ♦ *Deterministic* Core Services to support traceability and TMR
- ♦ Integrated *Diagnostic*, *Robustness* and *Security* Services
- Support for Model-based Design
- ♦ *Fate sharing* to achieve compatibility with the INTERNET
- (about 30 architectural principles)

The Notion of a Component as a HW/SW-Unit

Local Interface, e.g.

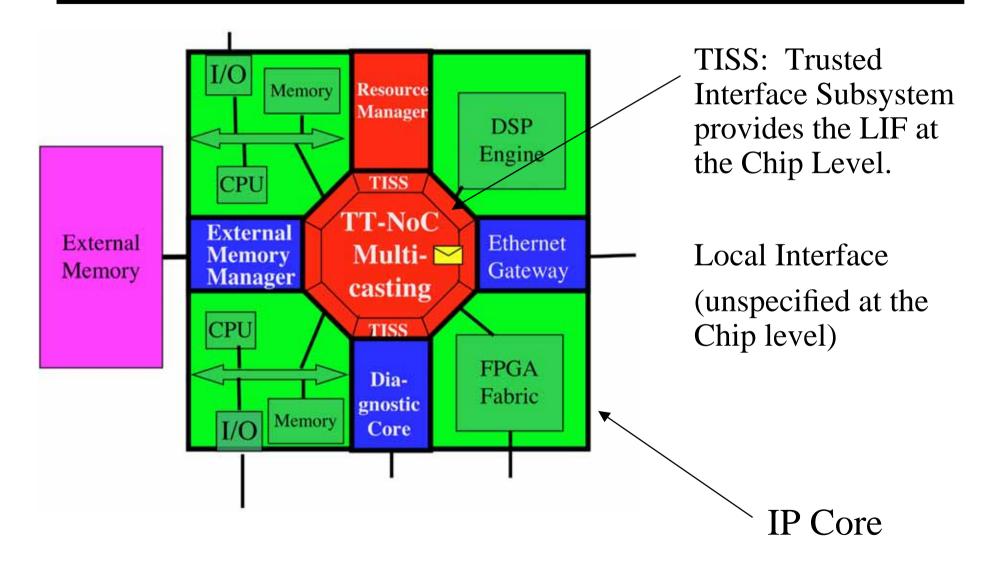
Ethernet, CAN, MIPI, ...

(Message based)

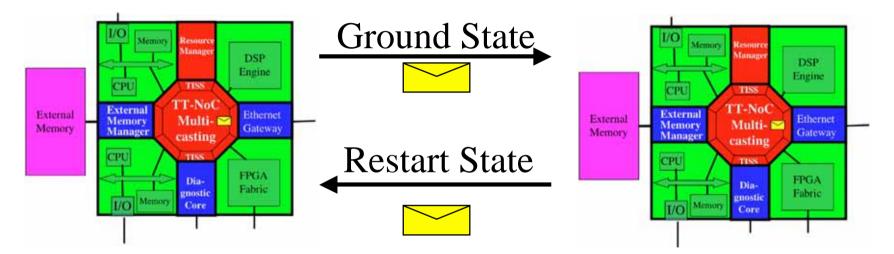
A Genesys component

- is a hardware/software unit of defined application functionality (an *IP Core*)
- contains a linking interface (LIF) which is fully specified in the domains of value and time
- is a fault-containment unit with specified error-containment boundaries
- has a defined *restart state* at its restart instant (cyclic)
- ♦ Is aware of the common time
- ♦ can have (unspecified) local interfaces

Model Driven Design: From the PIM to the PSM



Three types of messages:


- Event-triggered Messages with *exactly once semantics* and queues at the sender and at the receiver (core)
 - Guaranteed bandwidth
 - Best-effort bandwidth
- Time-triggered Messages with up-date in place and nonconsuming read (core)
- **Data-streams** with support for on-the fly processing, including water marking (optional core service)

- Chip Level: *IP Cores* are integrated by sending messages across a deterministic Network-on-Chip
- ◆ **Device Level**: *Chips* are integrated to form a device.
- System Level: *Devices* are integrated to form a system
 - Closed system
 - Open system (devices come and go dynamically)

Gateway components are used to link different levels. A gateway has two different LIFs, one *internal* to the lower level and one *external* to the higher level

Robustness

Component sends its ground state regularly to the ground-state monitor Ground state monitor performs error detection and restart with a state-estimated restart state

Conclusion

- The Genesys project aims to specify the frame-work for a cross domain European Architecture for Embedded Systems--from safety-critical systems to mobile devices operating in an open environment.
- The basic building blocks of Genesys are components (hardware/software units) that exchange information via messages only.
- The concern for dependability is a driving force for Genesys.