

### A Modelling Framework for Quantitative Analysis of Interdependencies in Electrical Power Systems

in the context of the EU CRUTIAL project

#### Felicita Di Giandomenico CNR-ISTI t work with Silvano Chiaradoppa and Paolo

Joint work with Silvano Chiaradonna and Paolo Lollini



June 30, 2008

### **Objective**

- Define a conceptual modeling framework well suited to characterize and analyze the interdependencies between
  - the information infrastructure
  - the controlled power infrastructure
- □ The focus is on **interdependence-related failure**:
  - Cascading failures
  - Escalating failures
  - Common-cause failures
- □ The goal is to **quantitatively assess** their impact on the resilience of these infrastructures
- The aim is to have a general evaluation framework, populated by building blocks, representing basic events, and composable to potentially represent any EPS configurations

# Hierarchical modeling framework for the quantitative evaluation of interdependencies



- Capture structural and behavioral aspects of EI and II components
- □ Major modelling framework characteristics:
  - Hierarchical composition using reusable generic submodels
  - Different formalisms for different submodels
  - Discrete and hybrid state representation
  - Performability measures for quantifying the impact of interdependencies
  - Combination of analytical and simulation solution techniques

### **Feasibility studies**

#### **Two directions:**

- Investigation of the framework's feasibility using the multiformalism, multi-solution tool Möbius and SAN formalism
- Development of an ad-hoc simulator, as a useful support to better understand specific phenomena

# Investigation of the framework's feasibility using Möbius and SAN

The basic modeling mechanisms have been implemented using **Stochastic Activity Networks** and **Möbius** tool, focusing on:

- □ Electrical Infrastructure components:
  - Nodes (Substations, Generators and Loads)
  - Power Lines
  - Protections
- □ Information Infrastructure components:
  - Local operations RS<sub>1</sub>() (performed by LCS), and
  - Global operations RS<sub>2</sub>() (performed by RTS)
  - **TSOcomNetw**: public or private network

And accounting for

- Power overload and propagation
- El components failures
- Il components failures

### **Major assumptions**

- □ The EI state is determined by the equations for the DC power flow approximation (derived from the standard AC circuit equations), which give a linear relationship between:
  - the power at the nodes and
  - the power flow on the lines
- □ The definition of **RS**<sub>1</sub>() and **RS**<sub>2</sub>() depends on the policies and algorithms adopted by II. They are obtained by solving a linear programming problem
  - The new state determined by RS<sub>1</sub>() is suboptimal wrt RS<sub>2</sub>() (being based on local information);
  - RS<sub>1</sub>() completes in time T<sub>1</sub>=0, while RS<sub>2</sub>() in time T<sub>2</sub>>0

# Logical structure of the analyzed EPS instance



### **The Composed Model**



□ **Rep\_AL**: nA not anonymous replicas of the model AL

□ Rep\_N\_LTC: nN not anonymous replicas of the model N\_LCT

□ The submodels interact through common places

# Diagram of the El grid (a portion of the IEEE 118 Bus Test Case)



### **Measure of interest**

P<sub>UD</sub>(t,t+1): percentage of the mean power demand that is not met in the interval [t,t+1] hours
(the symbol 'UD' stands for 'Unsatisfied Demand').

It is a user-oriented measure of the blackout size and can be obtained as the load shed (i.e., the not served power due to a load shedding) divided by the power demand.

### Analyzed scenario

**GOAL**: assess the impact of the **omission failure of the communication network** (ComNet) on  $P_{UD}(t,t+1)$  when a **simultaneous failure of a set of transmission lines** is occurred. More in detail:

- □ The grid starts in electrical equilibrium.
- At time zero, n<sup>LF</sup> power lines are simultaneously affected by a permanent failure (e.g., due to a tree fall or a terrorist attack), thus becoming unavailable.
  - The power lines that fail are randomly (*uniformly*) selected from the set of all available power lines.
  - All the failed power lines are (*deterministically*) repaired after 24 hours.
- At the same time zero, ComNet is simultaneously affected by a denial of service (DoS) attack.
  - The DoS attack ends after an *exponentially* distributed time with mean MTTR<sup>CNET</sup>, and from that time RTS can start computing the RTS reconfiguration action that will be (*deterministically*) applied after 10 minutes.

### Sensitivity analysis campaign

- A sensitivity analysis has been performed on the following parameters:
  - MTTR<sup>CNET</sup>, thus varying the duration of the DoS attack affecting the communication network. If MTTR<sup>CNET</sup> goes to infinity, then we are modeling a RTS omission failure.
  - n<sup>LF</sup>, thus varying the severity of the overall El failure.
  - $\alpha$ , thus varying the initial stress level of the power grid.
    - ✓ For each generator i,  $\alpha$  is defined as the ratio P<sub>i</sub>/P<sub>i</sub><sup>max</sup>.
    - ✓ In the initial grid setting all the ratios  $P_i/P_i^{max}$  are equal to a fixed value  $\alpha$ =0.85.

## P<sub>UD</sub>(t,t+1) ,with t=0,1,...,96 h., for different values of MTTR<sup>CNET</sup> (6,24 h.), n<sup>LF</sup> (1,2) and **α** (0.85,0.95)



- Unless for the lowest curves (α=0.85, n<sup>LF</sup>=1), the failure of even a single line at time zero produces and increment of P<sub>UD</sub>(t,t+1) until the reconfiguration is applied.
- At t=24 hours there is a big improvement (the failed power lines are repaired).
- The impact of the system stress level α is less heavy than the failure of power lines

## $P_{UD}(t,t+1)$ , with t=0,1,...,96 hours, for different values of MTTR<sup>CNET</sup> (6,24 h.) and n<sup>LF</sup> (1,...,5), fixing $\alpha$ =0.95



- P<sub>UD</sub>(t,t+1) increases considering higher n<sup>LF</sup> values, and fixing the value for n<sup>LF</sup>, P<sub>UD</sub>(t,t+1) gets worse in the case in which the DoS attack has a longer duration (24 hours).
- After 24 hours the disrupted power lines are repaired, and consequently P<sub>UD</sub>(t,t+1) rapidly decreases until reaching the zero value.
- The top most curve represents the case of RTS omission failure

#### Probability that P<sub>UD</sub>(0,1) is in the interval (a,a+10]%, with a=0,10,...,90, fixing α=0.95, n<sup>LF</sup>=1 and MTTR<sup>CNET</sup>=24 hours



From the analysis of the previous figures, we know that  $P_{UD}(0,1)\approx 2.5$ .

- Analyzing its complete distribution we note that:
- with a very high probability the percentage of undelivered power is equal to zero;
- P<sub>UD</sub>(0,1) is in the interval (0,10]% with a probability of about 0.05, and it is in the interval (40,50]% with a probability of about 0.07;
- all the other probabilities are almost zero.

A mean loss of 40-50% of delivered power in the first hour of the system can happen, for example, when the power line affected by the failure is directly connected to a generator.

#### $P_{UD}(t,t+1)$ at varying the failed power line, with t=0,1,...,96 hours, for different values of MTTR<sup>CNET</sup> (6,24 h.) and $\alpha$ (0.95, 0.85)



- Only power lines for which P<sub>UD</sub>(t,t+1) >0 are displayed
- Allows to determine critical power lines

### **Ongoing and future work**

- Detailed analysis and description of the EI grid's evolution through observing simulation runs
- Extension of the experimental campaign
  - by including the failures of other EI components
    - ✓ e.g., protections
  - by including other kinds of failures
    - ✓ e.g., lightning affecting power lines
  - by introducing other patterns of components failures
    - ✓ e.g., sequences of clusters of simultaneous failures
  - by enriching the set of measures of interest for the analyses
    - e.g., time to reach a certain black-out level
    - ✓ e.g., number of failed power lines/nodes in a certain interval of time