New Crypto Algorithms (and Protocols) for Sensor Networks

Ricardo Dahab IC - UNICAMP

(joint work with Leonardo Oliveira et al.)

Outline

- Introduction
- Security
- Goals
- Proposal
- Results
- Conclusion

Wireless Sensor Networks

NETWORKWORLD

New frontier for wirele Sensor networks

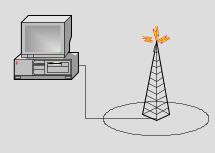
Smart Sensors to Network the World

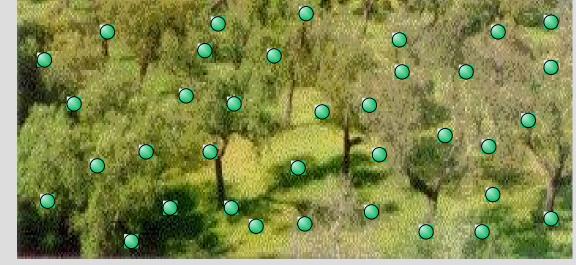
Security sensor market tops Sensor Web \$420 million annually

Meet NASA's Sensor Web

SRI Consulting Business Intelligence

Meshed Sensor Networks IFIP WG 10.4 Meeting


Deployment


• Tens of thousands of nodes are deployed in an area of interest

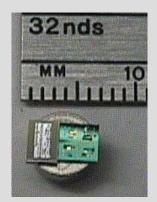
Setup

• Collected data is sent to the Base Station node.

Sensor Node

Non-reusable \implies low cost \implies low resource

- E.g. MICAz Motes
 - 8-bit/7.38MHz CPU
 - 4KB SRAM, 128KB flash



Popular Nodes

I(ntel)Mote (XScale/ARM)

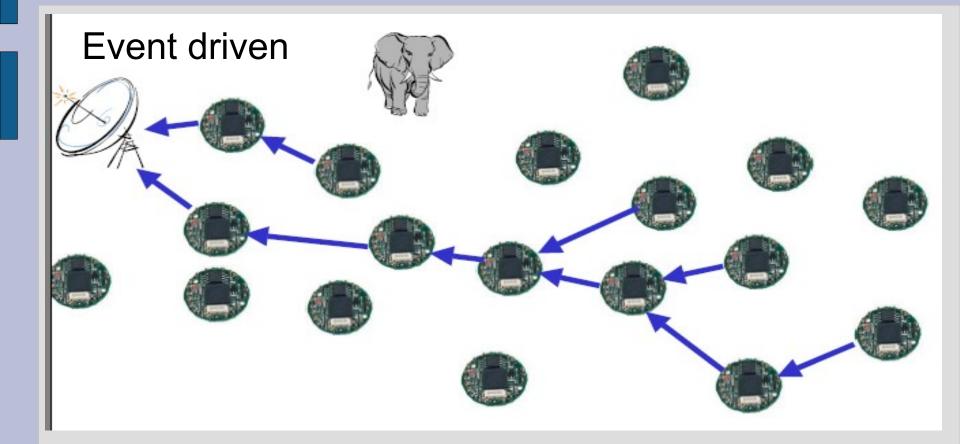
Smart Dust

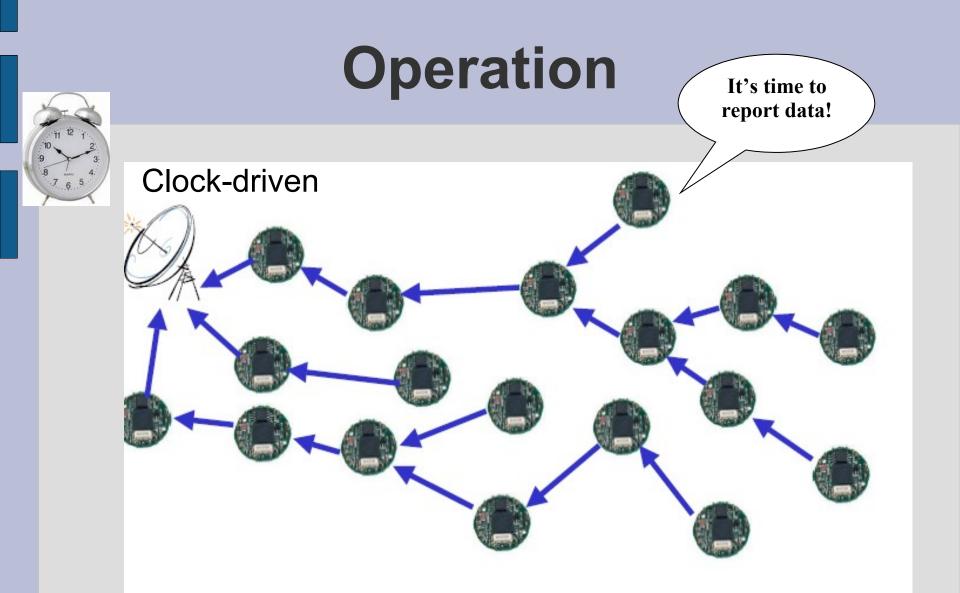
MICA Motes Natal, 22 Feb 2008

TelosB (16-bit/8-MHz) IFIP WG 10.4 Meeting

Sensor web

Applications


Natal, 22 Feb 2008

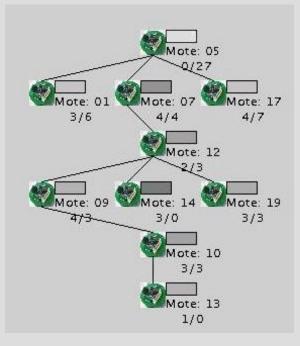

IFIP WG 10.4 Meeting

WSN vs MANETs

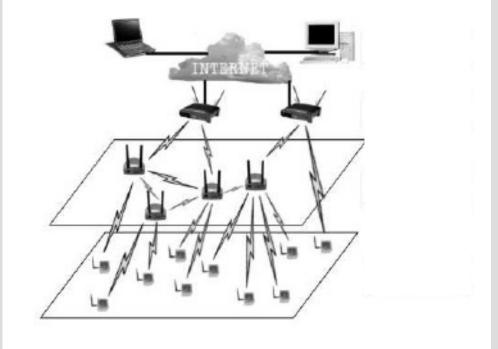
- Subclass of MANETs
- Nodes are quite static
- Do not possess PDA-level resources
- Communication is asymmetric
 - Mainly from nodes to Base Station
- Short lifetime
 - No battery recharge/replacement

Operation

Organization


Flat networks
 Nodes play identical roles
 Hierarchical networks
 Organized into clusters
 Ordinary nodes and cluster-heads play different roles

Organization


 Homogeneous networks
 Nodes are endowed w/ equivalent hardware
 Heterogeneous networks
 Nodes are endowed w/ different hardware

Organization

Flat and homogeneous

Hierarchical and heterogeneous

Natal, 22 Feb 2008

IFIP WG 10.4 Meeting

Challenge

Wireless communication, scarcity of resources, hostile environments

Broken Paradigm

The need for new approaches on

 E.g. communication, localization, security, data management, and fault management, etc.

Outline

- Introduction
- Security
- Goals
- Proposal
- Results
- Conclusion

Security in WSNs

Security problems in WSNs

- Security solutions are bootstrapped through key distribution schemes
- Problem: traditional methods of key distribution
 - Symmetric cryptosystems
 - Public key cryptosystems (PKC)
 - are inadequate for WSNs

Why conventional symmetric cryptosystems are inadequate

Symmetric Cryptosystems

Nodes use shared secret keys to communicate The same key is used to encrypt and decrypt data

Is attractive to WSNs because of its energy efficiency

Problem

How to setup secret keys between communicating nodes?

Group Key

- All msgs would be encrypted using the same key
- Simple, known, and low cost solution (symmetric algorithm)

Group Key

- All msgs would be encrypted using the same key
- Simple, known, and low cost solution (symmetric algorithm)
- Problem
 - -That's not robust

Group Key

- All msgs would be encrypted using the same key
- Simple, known, and low cost solution (symmetric algorithm)
- Problem

-That's not robust

Once a node is compromised, the whole network is compromised as well

Pairwise Secret Key

- Assigns a key for each pair of nodes
- Solves the problem of robustness
- Problem
 - Scalability

Nodes share a key w/ every other network node

Proposals for WSNs

Use key predistribution schemes Keys are loaded into nodes prior deployment

Ideal when neighborhood is known a priori

Proposals for WSNs

Use key predistribution schemes Keys are loaded into nodes prior deployment

Ideal when neighborhood is known a priori

Exception, not a rule

Why conventional public key cryptosystems are inadequate

Public Key Cryptosystems

Each node carries only a pair of keys
 A public and a private key
 Public keys are used to encrypt and private keys to decrypt data

Public Key Cryptosystems

Each node carries only a pair of keys
 A public and a private key
 Public keys are used to encrypt and private keys to decrypt data

Problem

Conventional PKC has prohibitive costs!

Proposals for WSNs

- Adequate conventional algorithms to sensor nodes
- Employ more efficient techniques
 - E.g. elliptic curve cryptography

Problem

Public key authentication is still required

Public Key Authentication

Procedure of assuring that the pub. key of B held by A does in fact belong to B
 Does this key really belong to Bob?
 Achieved through certificate exchange
 E.g. PKI and Auth. Diffie-Hellman

High overhead

Certificates

Certificate exchange
 Communication overhead
 Certificate storage
 Memory overhead
 Certificate authentication
 Computation overhead

Outline

- Introduction
- Security
- Goals
- Proposal
- Results
- Conclusion

Goals

- Give a better quality solution to the key distribution problem in WSNs
- Show how IBE can solve the key distribution problem in WSNs
- Show that IBE is indeed feasible in resource constrained nodes
 - E.g. MICAz mote

Outline

- Introduction
- Security
- Goal
- Our proposal: apply IBC in WSNs
- Results
- Conclusion

Identity-Based Cryptography

- Does not require key authentication
 Pub. keys are derived from pub. information
 Keys are self-authenticated
- One scenario
 - Public keys are email addresses
 - It would be known that Leo's public key would be: leob@ic.unicamp.br

Identity-Based Cryptography

- Does not require key authentication
 Pub. keys are derived from pub. information
 Keys are self-authenticated
- Scenario
 - Public keys are email addresses

It would be known that Leo's public key would be: leob@ic.unicamp.br

Nodes would employ IDs as

self-authenticated pub keys

However, IBC...

Requires a trusted entity

Requires that private keys to be delivered over a secure channel

IBC & WSNs: Synergy

IBC is compatible with WSNS

- Nodes employ nodes' IDs to protect the exchange of secret keys
- And vice-versa
 - IBC requires an unconditionally trusted entity
 - But WSNs fulfill this requirement
 The BS is (unconditionally) trusted

Can nodes afford to run IBC primitives?

Feasibility

Evaluation of pairings is the time consuming part in IBC

Feasibility

Evaluation of pairings is the time consuming part in IBC

Challenge

- Parameters are twice as big as conventional elliptic curve cryptography parameters
- We estimated the costs of evaluating pairings in a resource-constrained node
 MICAz node

Bilinear pairings

A map of two cyclic groups into one

$\mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$

that satisfies bilinearity.

- This allows for new, elegant solutions for
 - Identity-based signatures
 - Tripartite Diffie-Hellman
 - many other crypto protocols

Feasibility

Evaluation of pairings is the time consuming part in IBC

Challenge

Parameters much bigger than usual parameters

TinyTate

- Tate pairing
- Prime fields
- RSA-512 security level
 - Short network lifetime
- Underlying library
 TinyECC (Liu, Kampanakis, and Ning 2005)

MICAz mote

- 8-bit, 7.3828-MHz ATmega 128L processor
- 4 KB of primary memory (SRAM)
- 128 KB of program space (ROM)

Outline

- Introduction
- Security
- Goal
- Our proposal: IBC for sensor networks
 Results
- Conclusion

Results

Tate Pairing		
Time (seconds)	RAM (bytes)	ROM (bytes)
30.21	1,831	18,384

- 46% of RAM, 14% of ROM
- In most applications nodes will need to compute pairings only once
- Handbook of Wireless Mesh and Sensor Networking. McGraw-Hill International, NY. (Book Chapter: accepted)

Natal, 22 Feb 2008

IFIP WG 10.4 Meeting

Updated Results

NanoECC

- Based on MIRACL and Eta_T pairing.
- RSA-1024 security level

≥ 10.96s

NanoECC: *Testing the Limits of Elliptic Curve Cryptography in Sensor Networks*, European conference on Wireless Sensor Networks (EWSN'08). To appear.

Even Faster Results

About 5s and coming down
RSA-1024 security level
New algorithms
Work in Progress

Outline

- Introduction
- Security
- Goals
- Proposal
- Results
- Conclusion

Conclusion

- Current key distribution solutions for WNS are not completely adequate
- IBC can be used to solve the key distribution problem in WSNs
- Results indicate that IBC is indeed feasible in resource constrained nodes

Reference

- TinyPBC: Pairings for Authenticated Identity-Based Non-Interactive Key Distribution in Sensor Networks
- Leonardo B. Oliveira and Michael Scott and Julio López and Ricardo Dahab
- Cryptology Eprint Archive, report 2007/482, avalilable at http://eprint.iacr.org/2007/482

Et al.

P. Szczechowiak, J. Lopez, M. Scott, M. Collier, D. Aranha, F. Daguano, E. Morais, A. Loureiro

Ongoing and future work

- Improve timings and performance in general of pairing computations
- Implement complete IBC-based key distribution protocols in sensor nodes
- Work in progress
- Code and papers available at http://www.ic.unicamp.br/~leob

Thank you!

Natal, 22 Feb 2008

IFIP WG 10.4 Meeting