# Assuring Emergent Properties Under Composition: A Case Study of the U.S. National Airspace System

Natasha Neogi 52<sup>nd</sup> IFIP Workgroup 10.4 Meeting Edinburgh, Scotland June 29, 2007



## Outline

- US National Airspace System
- Accident Analysis
- Models and Languages
- Proof Strategies and Techniques
- Future Directions



# Outline

- US National Airspace System
  - Introduction
  - Motivation
- Accident Analysis
- Models and Languages
- Proof Strategies and Techniques
- Future Directions



#### **Mission and Strategic Goals**

- Mission
  - Provide a safe, efficient global aerospace system that contributes to national security.
- Strategic goals
  - Safety
  - Security
  - System efficiency
- Information Technology Drivers
  - Growth in aviation traffic
  - Need to reduce already low fatality rates
  - User demand for new and improved services



#### U.S. National Airspace (NAS) System Services



#### Introduction

# Mandate



Each day, manage 30,000 commercial flights to safely move 2,000,000 passengers

**I**ILLINOIS

- ~ 500 FAA Managed Air Traffic Control Towers
- ~ 180
   Terminal Radar
   Control
   Centers
- 20 Enroute Centers
- ~ 60 Flight Service Stations
- ~ 40,000
   Radars,
   NAVAIDs,
   Radios, etc.

#### A Crisis Looming in Air Transportation

- Exponential growth in demand but system not scalable
- US economy and quality of life highly dependent on air transportation
- Exacerbated by environmental, fuel, and security concerns
- Problem of national and international significance (Commission on the Future of the United States Aerospace Industry, JPDO, NGATS, NRC, SESAME/SESAR)







#### Unique Environment

- Safety and security are highest priorities
  - Airplanes can't stop in flight and corrupted messages can pose a dangerous situation
  - Most access/authentication systems not appropriate
  - Self-inflicted DOS not an option
- Mixed Equipage and Backwards Compatibility
- International 187 ICAO members
- NAS diversity uses physical separation and redundant systems
- Unlike DoD, Confidentiality is not primary concern, Integrity and Availability are critical

Increasingly automated, information driven system results in accidents due to complex, unpredictable interactions



## Outline

#### The National Airspace System

- Accident Analysis
- Models and Languages
- Proof Strategies and Techniques
- Future directions



### Warsaw, Poland (14 September 1993)





Airbus A320-200

Fatalities 2:70

A320 doesn't allow for manual application of braking when Full Flaps configuration set until touchdown recorded



# Nagoya, Japan (26 April 1994)







A300 autopilot designed not to disconnect using standard control column force below α-deck



#### Toulouse, France (30 June 1994)





Airbus A330-321 Fatalities: 7:7 During takeoff, aircraft automatically transitioned to an automode with no pitch authority limitations



**Accident Analysis** 

# Überlingen, Germany (1 July 2002)



TU-154M/Boeing 757-23APF Fatalities: 71:71



It is not required to notify the ATC prior to responding to a TCAS RA.



### Cleveland, Ohio (Denial of Service)



Boeing 767-300J Fatalities: 0:66



### Cleveland, Ohio (11 September 2001)



All traffic controlled by a single air traffic controller transmit on the same RF.



### Outline

Introduction

- Accident Analysis
- Model and Language
  - Modelling Issues
  - Hybrid Systems
- Proof Techniques
- Future Directions



**Modelling** 



#### **Multiple Qualities**

Approach: •Build in Safety/ Security from system inception

Broader Context:
Methodology applies to safety critical high confidence critical infrastructure systems
Can be used for mobile, real-time systems





#### **Continuous Trajectory Description**





**Hybrid Systems** 

# Discrete Conflict Definition for Continuous Trajectories

 Consider the protected zone around the own aircraft to be defined by the three mile cylindrical block:

$$T = \{ (x_r, y_r) \in \Re, \phi_r \in [-\pi, \pi) | x_r^2 + y_r^2 \le 3^2 \}$$

The aircraft are in conflict if:

$$(x_r, y_r, \phi_r) \in T$$



#### Model and Language for Hybrid Systems

#### **Related Work on Modeling**

- Switched system:  $x = f_{\sigma(t)}(x)$  [Branicky`98][Liberzon`03] Switching signal  $\sigma$  :P+ $\clubsuit$ {1,2,3,...,N}

  - Discrete behavior is not modeled
- Hybrid automata [Alur, Henzinger, et al. '96]
  - Finite state machine + differential equations
- Hybrid I/O automata [Lynch, Segala, Vaandrager `05]
  - Typed variables (N, P, sets, sequences, maps)
  - Continuous evolution  $\tau:[0,t] \rightarrow X$ ; Discrete transitions
  - Closed under composition
- Hazard Hybrid I/O automaton (HHA) [Neogi, Lynch, Leveson '07]
  - Continuous evolution specified by differential & algebraic equations, stopping conditions, invariance conditions
  - Abstraction based on reachable set overapproximation wrt invariant properties









#### Model and Language for Hybrid Systems

#### **HIOA Modeling Language**





Defines a set of *trajectories* for **H**, i.e., functions from [0,t] to variable values



#### Semantics for HIOA

- An execution of H is a sequence
  - $\alpha = T_0 a_1 T_1 a_2 T_2 \dots$
- Trace(α) externally visible part of α
  - Input/output variables and actions
- Nondeterminism: multiple start states, uncertainties in transitions and dynamics
   Traces(H) set of all traces of H
- C implements A if Traces(C) ⊆ Traces(A)
  - A is an abstraction for C

Want to prove for HIOA under some composition ||:

if F is invariant over H ^F is invariant over C  $\rightarrow$  F is invariant over H||C

Theorem: Given F is invariant over C and H, H||C

**JA** | traces(C)⊆ traces(A) and F is invariant over H∥A

High level spec A

Concrete implementation C



## Outline

Introduction

- Accident Analysis
- Modelling and Language
- Proof Techniques
  - Abstraction and Composition
  - Reachability Theory
- Future Directions



#### **Multiple Properties and Composition**

- Composition H || A
- Abstract supervisor A for ensuring that heading φ<sub>1</sub> is in safe range [φ<sub>min</sub>, φ<sub>max</sub>]
- Requirements dictate relative angular velocity must not exceed range [ω<sub>min</sub>, ω<sub>max</sub>]
- Construct H||A to achieve the desired invariant







#### **Abstraction and Composition**

#### **Composition and Abstraction in Verification**

- To verify concrete system H||C it suffices to show that C implements A.
- To show C implements A simulation relation R on states of C and A, s.t. each move of C, is matched by some sequence of moves of A that preserve R and have the same trace behaviour
- Abstraction constructed inductively by using the invariant properties to be verified 
   →Examine reachable behaviour



For a given controller/decision aid, C, that applies some input  $\omega_1$ /alerts with resolution R at time t, can we guarantee for all t:  $\chi_r^2 + y_r^2 \le 3^2$ 



### Reachable Sets: Ellipsoidal Overapproximations

#### Problem:

- Given Starting States, Inputs and Transition relations:

Initial Set



Input Set q(t) Q(t)

- Find a tight external overapproximation such that the ellipsoid touches the exact reach set at two points at time t<sub>1</sub>
  - Attempt to Verify Property
- Refine the overapproximation using counter-examples to eliminate unreachable states





### Reachable Sets: Ellipsoidal Overapproximations

#### Problem:

- Given Starting States, Inputs and Transition relations:

Initial Set x<sub>0</sub> X<sub>0</sub> + Input Set q(t) Q(t)

- Note that this generates a family of ellipsoids E
- For well behaved F<sub>i</sub>, each quality represents a manifold in the state space
- Pick the E<sub>i</sub> s.t. its projection on the manifold formed by F<sub>i</sub> is optimal wrt to the associated metric space





#### **Approximate Solution**

# 

**I** ILLINOIS

#### **Closed Form Solution**

$$\mathbf{x}^{*} - \mathbf{A}(\mathbf{u})\mathbf{x}^{*} = \mathbf{g}(\mathbf{u})$$
$$\mathbf{x}^{*}(\mathbf{u}_{0}) - \mathbf{x}^{0}$$

 $\mathbf{X}_{u}[i] = \mathbf{X}_{u}[i] [\mathbf{Z}_{u}(i)] = \prod_{u} [\mathbf{Z}_{u}(i)] [\mathbf{Z}_{u} = \mathbf{Z}_{u}(i)] [\mathbf{Z}_{u}^{-1}(i)] \mathbf{G}[i]_{u} \mathbf{G}[i$ 

Any choice of positive, integrable p(s) will yield an external approximation ellipsoid

For tight external ellipsoid  $\rightarrow p(s)$  must satisfy:

#### عادا – ا<sup>ر ع</sup>ادا کار د ط<sup>ی</sup> کار - ادار

<sup>(</sup>) ≤ 0 ≤ 73 **2, |2| - |1" 2|2**, **1, |2" 2" |2**, **1, |1|**"



# Example: Boeing 747 in Steady Climbing Turn Resolution Maneuver





#### Summary of Verification Process

Given hybrid system represented by H, and controller C, for some F=F₁UF₂UF₃U...UF<sub>n</sub>, Verify H∥C has invariant set F By construction:

Create H||A by overapproximating reachable set of H||C

Select abstraction A<sub>i</sub> such that F<sub>i</sub> is satisfied, and Ai is optimal

 $\mathbf{P} = \mathbf{A}_i$ 



## Outline

- The National Airspace System
- Accident Analysis
- Models and Languages
- Proof Strategies and Techniques
- Future Directions



### Scaled/UAV Testbed

Inject/Insert Errors to cause misbehaviour

- Evaluate detection coverage
- Measure Performance and Latency
- Verify timing assumptions under varying operational/environmental conditions
  - Error rate and type
  - Communications
  - Power consumption
  - Malicious events
- Discover incorrect/missing requirements that have not been traced to implementation





UAV movie

#### Air Transportation Vision

## A distributed air transportation system with

- Information-rich airspace
- Scalable/increased capacity
- Safe, secure operation
- Reduced environmental impact

#### That incorporates

- Human-centered automation
- Accommodation for new vehicles
- Shared situational awareness
- Distributed vehicle state and health, traffic, weather, and airport information
- Agile systems for safety, security, capacity, and environment





#### Thank You! Questions?

### A Day in the Life of Global Air Traffic



