
Application-Aware Security

Zbigniew Kalbarczyk

W. Healey, K. Pattabiraman, R. Iyer

Center for Reliability and High-Performance Computing

Coordinated Science Laboratory

University of Illinois, Urbana-Champaign

Goals

• Detectors based on application-specific properties

• Early detection of attacks
– Detect attacks before they corrupt critical memory state

• Derive detectors automatically from application
– Extract properties of the application using compiler analysis

– Enforce extracted properties at runtime

• Provide efficient hardware implementation
– Integration with Reliability and Security Engine (RSE)

– Low-latency monitoring and detection at runtime

Derivation of Attack Detectors

• Goal: Preemptively protect "security-critical data"

• Technique: Information Flow Signatures
– Derive dependences for critical variable using static analysis

– Encode dependencies for critical variable(s) as signature

– Check that the signature is not violated at runtime

• Can be applied selectively to critical variables in program even
though other variables are attacked

• Threat/Attack Model
– Memory Corruption Attacks (Buffer overflows, format string)

– Hardware attacks (smart-card based attacks)

– Insider attacks (malicious plugins, third party libraries)

Attack Detectors: Conceptual Example

1 int authenticate(char* username, char* password)

2 {

3 int authenticated=0;

4 int result;

5 char tmpbuf[512];

6 result = !strncmp(“asecret”,password,7);

7 snprintf(tmpbuf,sizeof(tmpbuf),username);

8 tmpbuf[sizeof(tmpbuf)-1] = ‘\0’;

9 syslog(LOG_NOTICE,tmpbuf);

10 authenticated |= result;

Attacker overwrites

authenticated via format string

Attacker overwrites result

instead, realizing that it

 influences authenticated

Critical Variable: authenticated; Signature: {10,6},{3}

Information-flow signatures encode not just direct dependences,

but also indirect dependences

TI 1

Untrusted

Insn

Critical Data 1

Critical Data 2

Level 1 : Only trusted instructions

(in the backward slice of any critical

variable) can influence critical data

Trusted Instructions Critical Data

TI 2

TI 3

Level 1 Check: Trustedness

Level 2 Check: Verification of Trust

TI 1

TI 2

Critical Data 1

Critical Data 2

TI 3
Level 2 : Each trusted instruction

writes only to its allowed targets

(as determined by compiler)

Level 3 Check: Completeness

TI 2

Critical Data 2

TI 3

Level 3 : All

trusted

instructions that

write to critical

data (along a

control path), do

so before its use

in a security

critical context

Use in security

critical context

Example Results for Attack Detectors: OpenSHH

Software Checking Overheads

0

100

200

300

400

500

600

700

au
th

ct
xt

re
tv
al

fa
ke

pw
 p

tr

Per
m

it_
em

pt
y_

pa
ss

w
d

Critical Variable

E
x

e
c

u
ti

o
n

 T
im

e
 (

m
ic

ro
s

e
c

o
n

d
s

)

Baseline

Initialization

Time

Checking +

Dynamic

Mapping

Performance overhead depends on length of dependence trees of critical

variables and the size of the set of allowed targets for trusted instructions

Hardware Implmentation

• FPGA implementation and sythesis of the Level 1

and Level 3 checks

• Performance overhead:

– 4.8% (for OpenSHH, WuFTP, and NullHttpd)

• Hardware area overhead

– 30% on FPGA (but only 7.5% of equivalent ASIC gates)

– ASIC implementation routes not constrained to pre-placed

wires (as it is on FPGA) and can be placed more efficiently

Executing on a Coprocessor:
The Trusted Illiac Node Architecture

Trusted Illiac Node

PCI Card with Coprocessor

PCI Card’s RAM

PCI Card’s FPGA

Coprocessor

C Program

With Security

And Reliability

Checking

Leon 3 + RSE in FPGA

Host CPU

Host C Program

Host RAM

PCI Bus
PCI-to-Leon 3

Bus Interface

L
e
o
n
 3

 B
u
s

11

Deployment in Trusted Illiac

• Application-specific

detectors

Reliability – process

health monitor, data value

checking

Security – dataflow

signature checking, pointer-

taintedness checking

• Definition of hardware-

software interfaces

P2P Streaming

application

Model-driven trust

management

• Integration of hardware

accelerators with Linux OS

Initial Cluster
•256 Linux nodes

Trusted Illiac Node
for advanced
hardware
development

FPGA-based
hardware

Reliability and

Security

Engine
•DLX (MIPS ISA)

•Leon3 (SPARC ISA)

Pointer

Taintedness

Main Processor Instruction Pipeline

RSE – Reliability and Security Engine

DecodeExecute Memory Commit

PC Operands

Security Checks Reliability Checks

Halt Signal

Data-flow Signature Checking

Pointer Taintedness Checking

Result Data

Signature

Accumulator

Data Value Checking

Critical

Variable

Signatures

Critical Variable

Re-Computation

Path

Tracking

Process

Health

Monitor

Fetch

Taintedness

Tracking

Taintedness

Detection

Control-

Flow

Checking

