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Goals

 Detectors based on application-specific properties

o Early detection of attacks
— Detect attacks before they corrupt critical memory state

 Derive detectors automatically from application
— Extract properties of the application using compiler analysis
— Enforce extracted properties at runtime

 Provide efficient hardware implementation
— Integration with Reliability and Security Engine (RSE)
— Low-latency monitoring and detection at runtime



Derivation of Attack Detectors

Goal: Preemptively protect "security-critical data"

Technique: Information Flow Signatures
— Derive dependences for critical variable using static analysis
— Encode dependencies for critical variable(s) as signature
— Check that the signature is not violated at runtime

Can be applied selectively to critical variables in program even
though other variables are attacked

Threat/Attack Model
— Memory Corruption Attacks (Buffer overflows, format string)
— Hardware attacks (smart-card based attacks)
— Insider attacks (malicious plugins, third party libraries)



Attack Detectors: Conceptual Example

1 int authenticate(char* username, char* password)

2 { gggg;;r overwrites result
int authenticated=0: rRYFMIgeRat it
nt it authepiraéerd ddaalameaticHisg
Int result;

Information-flow signatures encode not just direct dependences,

but also indirect dependences
7\ snprintf(tmpbuf,sizeof(tmpbuf),username);
8 tmpbuf[sizeof(tmpbuf)-1] = \0’;
9 syslog(LOG_NOTICE,tmpbuf);
10 authenticated |= result;

—
Critical Variable: authenticated; Signature: {10,6},{3}




Level 1 Check: Trustedness
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Level 2 Check: Verification of Trust

Critical Data 1

Level 2 : Each trusted instruction
writes only to its allowed targets
(as determined by compiler)

° Critical Data 2



Level 3 Check: Completeness

\ Critical Data 2

Level 3 : All
trusted
Instructions that
write to critical

Use in security

critical context data (along a
control path), do

so before its use

In a security
critical context



Example Results for Attack Detectors: OpenSHH
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Performance overhead depends on length of dependence trees of critical
variables and the size of the set of allowed targets for trusted instructions



Hardware Implmentation

* FPGA implementation and sythesis of the Level 1
and Level 3 checks

« Performance overhead:
— 4.8% (for OpenSHH, WuUFTP, and NullHttpd)

« Hardware area overhead
— 30% on FPGA (but only 7.5% of equivalent ASIC gates)

— ASIC implementation routes not constrained to pre-placed
wires (as it is on FPGA) and can be placed more efficiently



Executing on a Coprocessor:
The Trusted llliac Node Architecture
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Deployment in Trusted llliac
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Checking

Application-specific
detectors

» Reliability - process

health monitor, data value
checking

» Security - dataflow

signature checking, pointer-
taintedness checking

Definition of hardware-
software interfaces

» P2P Streaming
application

» Model-driven trust
management

Integration of hardware
accelerators with Linux OS
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