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Goals

• Detectors based on application-specific properties

• Early detection of attacks
– Detect attacks before they corrupt critical memory state

• Derive detectors automatically from application
– Extract properties of the application using compiler analysis

– Enforce extracted properties at runtime

• Provide efficient hardware implementation
– Integration with Reliability and Security Engine (RSE)

– Low-latency monitoring and detection at runtime



Derivation of Attack Detectors

• Goal: Preemptively protect "security-critical data"

• Technique: Information Flow Signatures
– Derive dependences for critical variable using static analysis

– Encode dependencies for critical variable(s) as signature

– Check that the signature is not violated at runtime

• Can be applied selectively to critical variables in program even
though other variables are attacked

• Threat/Attack Model
– Memory Corruption Attacks (Buffer overflows, format string)

– Hardware attacks (smart-card based attacks)

– Insider attacks (malicious plugins, third party libraries)



Attack Detectors: Conceptual Example

1   int authenticate(char* username, char* password)

2   {

3  int authenticated=0;

4  int result;

5  char tmpbuf[512];

6   result = !strncmp(“asecret”,password,7);

7   snprintf(tmpbuf,sizeof(tmpbuf),username);

8  tmpbuf[sizeof(tmpbuf)-1] = ‘\0’;

9  syslog(LOG_NOTICE,tmpbuf);

10 authenticated |= result;

Attacker overwrites

authenticated via format string

Attacker overwrites result

instead, realizing that it

          influences authenticated

Critical Variable: authenticated;  Signature: {10,6},{3}

Information-flow signatures encode not just direct dependences,

but also indirect dependences
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Level 2 Check: Verification of Trust
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Level 3 Check: Completeness
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Example Results for Attack Detectors: OpenSHH

Software Checking Overheads
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Performance overhead depends on length of dependence trees of critical

variables and the size of the set of allowed targets for trusted instructions



Hardware Implmentation

• FPGA implementation and sythesis of the Level 1

and Level 3 checks

• Performance overhead:

– 4.8% (for OpenSHH, WuFTP, and  NullHttpd)

• Hardware area overhead

– 30% on FPGA (but only 7.5% of equivalent ASIC gates)

– ASIC implementation routes not constrained to pre-placed

wires (as it is on FPGA) and can be placed more efficiently



Executing on a Coprocessor:
The Trusted Illiac Node Architecture
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Deployment in Trusted Illiac

• Application-specific

detectors

Reliability – process

health monitor, data value

checking

Security – dataflow

signature checking, pointer-

taintedness checking

• Definition of hardware-

software interfaces

P2P Streaming

application

Model-driven trust

management

• Integration of hardware

accelerators with Linux OS

Initial Cluster
•256 Linux nodes

Trusted Illiac Node
for advanced
hardware
development

FPGA-based
hardware

Reliability and

Security

Engine
•DLX (MIPS ISA)

•Leon3 (SPARC ISA)
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