Application-Aware Security

Zbigniew Kalbarczyk
W. Healey, K. Pattabiraman, R. lyer

Center for Reliability and High-Performance Computing
Coordinated Science Laboratory
University of lllinois, Urbana-Champaign



Goals

 Detectors based on application-specific properties

o Early detection of attacks
— Detect attacks before they corrupt critical memory state

 Derive detectors automatically from application
— Extract properties of the application using compiler analysis
— Enforce extracted properties at runtime

 Provide efficient hardware implementation
— Integration with Reliability and Security Engine (RSE)
— Low-latency monitoring and detection at runtime



Derivation of Attack Detectors

Goal: Preemptively protect "security-critical data"

Technique: Information Flow Signatures
— Derive dependences for critical variable using static analysis
— Encode dependencies for critical variable(s) as signature
— Check that the signature is not violated at runtime

Can be applied selectively to critical variables in program even
though other variables are attacked

Threat/Attack Model
— Memory Corruption Attacks (Buffer overflows, format string)
— Hardware attacks (smart-card based attacks)
— Insider attacks (malicious plugins, third party libraries)



Attack Detectors: Conceptual Example

1 int authenticate(char* username, char* password)

2 { gggg;;r overwrites result
int authenticated=0: rRYFMIgeRat it
nt it authepiraéerd ddaalameaticHisg
Int result;

Information-flow signatures encode not just direct dependences,

but also indirect dependences
7\ snprintf(tmpbuf,sizeof(tmpbuf),username);
8 tmpbuf[sizeof(tmpbuf)-1] = \0’;
9 syslog(LOG_NOTICE,tmpbuf);
10 authenticated |= result;

—
Critical Variable: authenticated; Signature: {10,6},{3}




Level 1 Check: Trustedness

Trusted Instructions Critical Data

Tl 1 >

Critical Data 1
Tl 2 I

Critical Data 2
T1 3

Level 1 : Only trusted instructions
(in the backward slice of any critical
variable) can influence critical data




Level 2 Check: Verification of Trust

Critical Data 1

Level 2 : Each trusted instruction
writes only to its allowed targets
(as determined by compiler)

° Critical Data 2



Level 3 Check: Completeness

\ Critical Data 2

Level 3 : All
trusted
Instructions that
write to critical

Use in security

critical context data (along a
control path), do

so before its use

In a security
critical context



Example Results for Attack Detectors: OpenSHH

Software Checking Overheads

© 700 -
c
§ 600 - T
3 500 @ Baseline
(&)
£ 400
£ 300
= O Initialization
c 200 .
o Time
5 100 -
%
w0 @ Checking +
Dynamic
Mapping
@6{\ Critical Variable
R

Performance overhead depends on length of dependence trees of critical
variables and the size of the set of allowed targets for trusted instructions



Hardware Implmentation

* FPGA implementation and sythesis of the Level 1
and Level 3 checks

« Performance overhead:
— 4.8% (for OpenSHH, WuUFTP, and NullHttpd)

« Hardware area overhead
— 30% on FPGA (but only 7.5% of equivalent ASIC gates)

— ASIC implementation routes not constrained to pre-placed
wires (as it is on FPGA) and can be placed more efficiently



Executing on a Coprocessor:
The Trusted llliac Node Architecture

Trusted llliac Node

Host RAM

Host CPU I

Host C Program

PCI Card with Coprocessor

PCIl Card’'s RAM

PCIl Card’'s FPGA

Leon 3 Bus

v

7 With Security

> PCI-to-Leon 3

PCI Bus

Bus Interface

Leon 3 + RSE in FPGA

Coprocessor
C Program

And Reliability
Checking




Deployment in Trusted llliac

Initial Cluster

*256 Linux nodes

(50l hardware

ain Processor Instruction Pi pelin
te || Decode Fetch | Memory | Col

Trusted llliac Nodel\"*"*
for advanced il |
hardware

development Reliability and

Security
Engine

«DLX (MIPS ISA)
*Leon3 (SPARC ISA)

= FPGA-based

||||||

Checking

Application-specific
detectors

» Reliability - process

health monitor, data value
checking

» Security - dataflow

signature checking, pointer-
taintedness checking

Definition of hardware-
software interfaces

» P2P Streaming
application

» Model-driven trust
management

Integration of hardware
accelerators with Linux OS

11



