On a framework for modeling and analyzing interdependencies in Electrical Power Systems

Felicita di Giandomenico CNR-ISTI

felicita.digiandomenico@isti.cnr.it Joint work with Silvano Chiaradonna (CNR-ISTI) and Paolo Lollini (Univ. of Florence)

Workshop on Critical Infrastructure Protection

51st Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance Guadeloupe, January 10-14, 2007

Outline

- Context and objectives
- Description of the Electrical Power System
 - The electrical infrastructure
 - The Information technology based control system
- Failure model of EPS
- State definition for EI and ITCS
- The Interdependencies between EI and ITCS
- Relevant aspects of the EPS modeling framework
- Feasibility study
- Conclusions and next steps

The context - 1

- Economy, security and quality of life increasingly depend on the resiliency of a number of critical infrastructures
- Critical infrastructures are complex collections of interacting systems and components, communicating through multiple heterogeneous networks
- Interdependencies increase vulnerability, as they give rise to multiple error propagation channels from one infrastructure to another
- Therefore, the **impact of infrastructure components failures** and their **severity** can becomes much higher and more difficult to foresee compared to failures confined to single infrastructures

Analysis of infrastructures components interactions is crucial to understand and characterize interdependencies

The context - 2

- Electrical Power Systems are prominent representatives of CI
- Interdependencies between the electrical power grid (EI) and the control system infrastructure (ITCS) have been responsible of major power grid blackouts
- The Consortium for Electric Reliability Technology Solutions (CERTS) is particularly active in studying cascading failures
- However, existing models **do not explicitly account for** the complex interactions between EI and ITCS
- The EU STREP 027513 **CRUTIAL** project is addressing the analysis and management of interdependencies and of the resulting operational risk

Objective

- Define a conceptual modeling framework well suited to characterize and analyze the interdependencies between
 - the information infrastructure
 - the controlled power infrastructure
- The focus is on **interdependence-related failure**:
 - Cascading failures
 - Escalating failures
 - Common-cause failures
- The goal is to **quantitatively assess** their impact on the resilience of these infrastructures

Electrical Power System (EPS) characterization

- The EPS system can be seen as composed of two interacting sub-systems:
 - The Electric Infrastructure (EI);
 - The Information
 Technology Based
 Control System (ITCS).
- An event (e.g. failure or recovery) that occurs in one sub-system can "affect" the behavior of the other subsystem (interdependencies).

The Electrical Infrastructure

The **EI** produces and transports the electric power to the final users

- **HG**: high voltage generation plant
- LG: medium/low voltage generation plant
- TG: transmission grid
- **DG**: distribution grid
- HL: huge voltage load
- LL: medium and low voltage load

Focusing on substation and power lines

ISTITUTO DI SCIENZA E TECNOLOGIE DELL'INFORMAZIONE "A, FAEDO"

Example of Topology for a TG

meshed graph

Logical scheme

The ITCS system

ITCS is in charge of:

- Assuring availability of El
- Enhancing QoS (frequency and voltage regulation)
- Optimizing generators and substations management

Logical components of ITCS:

- Protection system;
- Frequency and voltage regulation systems;
- Tele-operation systems (DTOS for the DG and TTOS for the TG)

The logical ITCS components interact through a hierarchical structure, using public and/or private networks to exchange exchange grid status information and control data

Logical structure of TTOS and DTOS

LTS (Local Tele-control System), RTS (Regional Tele-control System) and NTS (National TelecontrolSystem) of TTOS, LTC (LocalTele-control System) and ATC (AreaTele-control System) of DTOS

These components differ for their criticality and for the locality of their decisions.

El Failure Model

- Transient or permanent disconnection of a component N_s, N_G, N_L and A_L with consequent disconnection of one or more components from the grid. Transient or permanent failed disconnection of a component N_s, N_G, N_L and A_L without isolation from the grid.
- Transient or permanent overloads of N_s and A_L. Unexpected reduction of production of N_G. Unexpected increase or reduction of demand of N_L. Voltage collapse. Under-frequency and loss of synchronism.

Disconnections imply changes in the topology T of the grid and consequent changes of V, F, I, A, P and Q.

The disruptions at point 2 represent changes of the electrical parameters of the components of the grid N_S , N_G , N_L and A_L and do not necessarily imply changes in T.

ITCS Failure Model

- The failures of the ITCS components can be summarized in:
 - omission failure,
 - time failure,
 - value failure and
 - byzantine failure.

Here the focus is on the failures and not on their causes (internal HW/SW faults, malicious attacks, etc.).

State definitions

• El status is defined by an **hybrid state** S_{EI} :

 S_{EI} =(discrete part; continuous part) In particular: S_{FI} =(T; V,F,I,A,P,Q),

where

T=Topology of the grid

V,F,I,A,P,Q= Voltage, Frequency, Current flow, Angle, Active and Reactive Power

ITCS status is defined by a discrete state S_{ITCS}:
 S_{ITCS}=(discrete part)

E.g.: S_{ITCS}=(Working, Partially failed, Lessened, Recovery, ...)

Why an hybrid state for EI?

- The electrical values associated to an El component (e.g. voltage, current flow, ...) are important, since they influence:
 - The time to disruption of the component
 - The correct application of a protection
 - The type of reconfiguration action to be applied (more or less "aggressive", timed-constrained, ...)
 - ...
- The topology of the El is important, since it influences:
 - The propagation of a disruption from an EI component to its contiguous components
 - The type of reconfiguration action to be applied (local, regional, national, ...)

- ...

Causes of state changes

- The state of El changes in case of:
 - Disruption of an EI component
 - Activation of a local protection
 - Reconfiguration action by ITCS (including erroneous, delayed or not required reconfiguration)
- The state of ITCS changes in case of:
 - Failure/recovery of an ITCS component
 - Disruption of the EI

Interdependencies

• $S_{ITCS} \rightarrow S_{EI}$

- Impact on T and/or the values of V,F,I,A,P,Q
 - E.g. a value failure of LTS (incorrect closing or opening of the power line A_L) - such failure can also impact on connected RTS components
- $S_{EI} \rightarrow S_{ITCS}$
 - E.g. a failure in the EI causes a partial black-out that could reduce the performance of the private or public networks used by ITCS, or isolate part of the ITCS.
- $(\mathbf{S}_{\textit{EI}} \text{ and } \mathbf{S}_{\textit{ITCS}}) \rightarrow (\mathbf{S}_{\textit{EI}} \text{ or } \mathbf{S}_{\textit{ITCS}})$
 - E.g. an ITCS component fails (omission failure) and does not isolate an EI component affected by a disruption
 - ➔ the grid topology changes (the disruption propagates and a set of contiguous EI components becomes disrupted)

Dynamic behavior of EPS

Where **NORMAL**, **ALERT**, **EMERGENCY** and **IN EXTREMIS** are EI operative states with increasing criticality from NORMAL (all constraints are satisfied) to IN EXTREMIS (service partially or totally interrupted)

Dynamic behavior of EPS - 2

ISTITUTO DI SCIENZA E TECNOLOGIE DELL'INFORMAZIONE "A, FAEDO"

- It should be able to capture structural and behavioral aspects of EPS components
- Major identified characteristics, grouped in:
 - > Modeling power aspects
 - > Modeling efficiency aspects
 - Solution power aspects

Modeling power aspects

The framework should support:

- A1. Different formalisms for different sub-models
- A2. Representation of continuous and discrete states
- **A3.** Time and probability distributions and enabling conditions can depend on both the continuous and the discrete state
- A4. Call to functions implementing the reconfiguration, regulation and auto-evolution algorithms
- **A5.** Definition of (performability) measures, appropriate for EPS risk analysis

Modeling efficiency aspects

The framework should support:

- **B1.** Hierarchical composition of different submodels
- **B2.** Replication of (anonymous and nonanonymous) sub-models (sharing a common state)
- **B3.** Compact representation of the grid topology (e.g. using incidence matrix [nodes x arcs])
- **B4.** Compact representation of the electrical parameters (V,F,I,A,P,Q) (e.g. through arrays of real-values)

Solution power aspects

The framework should support:

- Analytical solution of the overall model (if feasible). Possible problems:
 - State-space explosion
 - Stiffness
 - Unavailable analytical methods for the considered class of models more applicable to simpler sub-models
- Simulation
 - by automatic tools
 - by ad-hoc simulation software
- Separate evaluation of different sub-models and combination of the results

Feasibility study - 1

Feasibility of the modeling framework, aiming to show:

- How some basic framework characteristics can be actually obtained
- Model construction of a simple EPS instance focusing on
 - Substations
 - Protections
 - Local Tele-control systems
 - Regional Tele-control systems

Feasibility study - 2

- Feasibility of the modeling framework using the multi-formalism/multi-solution tool Mobius
- Formalism for models representation: Stochastic Activity Networks (SAN)
- ***** Motivations for this choice:
 - Mobius provides features to support the framework characteristics (points A1. - A5.; B1. - B4.)
 - It also supports multiple solution methods (analytic, simulation) and combination of solutions obtained through different methods.

Modeling a Substation

SAN of a single N_s

Major SAN elements - 1

- The extended place T (common place among the replicas) is an array of array of short type and represents the topology: T[i,j]=1 means component *i* is connected to component *j*, otherwise its value is 0 (A2., B3.)
- The extended places I and V (common places among the replicas) are arrays of struct type and describe the characteristics of the electrical parameters (only current and voltage, for simplicity): e.g., I[j] represents the current flow associated to component j, and relative threshold values for overloads and breakdown (A2., B4.)

Major SAN elements - 2

- The input gate ifZero enables to distinguish each replica when the N_S model is replicated (B2.)
- The function propagateOverload() is in charge of determining the new values of T and of the electrical parameters, following an event of overload of the current flow (it calls external functions, A4.)
- The rate of the activity **ToverloadD** (time to the occurrence of an internal disruption) depends on the current flow of the component (A3.)

Modeling protections

SAN for protections inside AL

Modeling a local Tele-operation system

SAN for LTS

Building part of an instance of EPS

- Replication and composition of the template models is performed through the Rep and Join operators (B1.)
- The replicas interact through common places (B2.)

Conclusions

- Definition of a modeling framework to analyze the interdependencies between the electrical infrastructure EI and the control information system ITCS
- > Still preliminary studies, but relevant contributions to
 - The analysis of the structure and behavior of the EI and ITCS subsystems, including their failure models and states definitions;
 - The identification of the major challenges the modeling framework has to deal with, and discussion of possible approaches to cope with them;
 - The implementation of a few basic modeling mechanisms inside the Mobius modeling and evaluation environment, to support the feasibility of the proposed approach through an existing tool.

Next steps

- Further investigations on the appropriate level of model's details for EI and ITCS
- Extension and refinements of the modeling mechanisms
- Verification of the applicability of the approach on a simple but complete EPS example
- Study of the solution aspects
-

Main references

 L. Ferrarini and E. Ciapessoni. Indagine sulla sicurezza funzionale dei sistemi di automazione delle reti elettriche. NORME / AUTOMAZIONE /Workpackage 1 /Milestone 1.2 Rapporto 1/1 della milestone A5-052457, CESI - FIA Informatica e Automazione, Dicembre 2005.

http://www.ricercadisistema.it/Documenti/SintesiDoc.aspx?idN=1360&idD=312616

- 2. J-C. Laprie, K. Kanoun, and M. Kaaniche. Modeling cascading and escalating outages in interdependent critical infrastructures. In IEEE Int. Conference on Dependable Systems and Networks (DSN-2006), pages 226–227, Philadelphie (USA), June 2006. Fast abstract.
- 3. S. Chiaradonna, P. Lollini, and F. Di Giandomenico. On the modeling of an instance of the electric power system. Technical Report rcl061201, University of Florence, Dip. Sistemi Informatica, RCL group http://dcl.isti.cnr.it/Documentation/Papers/Techreports.html,December 2006.

