Interdisciplinary Experiences with GridStat: Pub-Sub Status Dissemination for the Power Grid

Prof. Dave Bakken

School of Electrical Engineering and Computer Science Washington State University Pullman, Washington USA

> 51st IFIP 10.4 WG Meeting, Guadeloupe January 12, 2007

WASHINGTON STATE

http://gridstat.net

GridStat Team

- Faculty: Dave Bakken, Carl Hauser, Anjan Bose
- Current Students:
 - Graduate: Stian Abselsen, Erlend Viddal, Jim Kusznir, Sunil Muthuswamy, Erik Solum, Wendy Maiden (PNNL), Joel Hekley, Kim Swenson
 - Undergraduate: Eric Paige, Loren Thompson, Nathan Schubkegel
- Alumni:
 - Graduate students: Ioanna Dionysiou (PhD 2006), Kjell "Harald"
 Gjermundrød (PhD 2006), Venkata Irava (PhD 2006), Ryan
 Johnston (MS 2005), Ping Jiang (MS 2004), Suprith Sheshadri (MS 2005)
 - Undergraduates: about a dozen on senior projects (Avista Utilities)
- Note: all above students are computer science
 - Also working with Sudipto Bhowmik (PhD EE soon, almost MS CS)

Outline of Talk

• The Problem

- Interdisciplinary Observations
- GridStat Rationale & Overview
- GridStat Framework

Rationale for Better Communications

- US Electric Power Communications System is aging
 - SCADA & ICMP are 1960s technology
 - Not updated meaningfully (no industry investment)
 - Much star-connected, inflexible, slow, crude SCADA "polling"
 - Very little between electric utilities
- Data collection has increased many fold at substations
 - Faster measurement rates, often time synchronized
 - Communications not there to move this data where needed

Rationale for Better Communications (cont.)

- Clark Gellings, EPRI* (<u>emphasis</u> mine)
 - "The <u>ultimate</u> challenge in creating the power delivery system of the 21st century is in the development of a communications infrastructure that allows for universal connectivity."
 - "In order to create this new power delivery system, what is needed is a **national electricity-communications superhighway** that links generation, transmission, substations, consumers, and distribution and delivery controllers."

*EPRI≡Electric Power Research Institute, www.epri.com, an industry-funded US R&D org.

Rationale for Better Communications (cont.)

- Mechanisms for protection and control are >99% local
 - Poor communications infrastructure does not allow otherwise!
 - But dynamic phenomena are grid-wide
 - Special communication links needed for SPS/RAS
 - Special links and data concentrators for PMUs
- Power grid landscape is changing!
 - More "miles x megawatts": little new transmission lines
 - More participants that can affect grid stability
 - More heterogeneity of devices
 - Heightened security concerns
- Resulting situation awareness is bleak ("flying blind")
 - Strong contributing factor in <u>all</u> recent blackouts (US, Italy, ...)
 - Greatly limits better control and protection schemes

Outline of Talk

- The Problem
- Interdisciplinary Observations
- GridStat Rationale & Overview
- GridStat Framework

Interdisciplinary Observations on Power R&D

- Electric power in USA spends less on R&D than pet food industry (IEEE, EPRI)
 - Similar problems & culture in Europe, too (sabbatical & US-EU)
 - Starting to change: now bimodal/bipolar
- Different terms: security, N-1, status
- Power (and other) engineers
 - Tend to "lock on" to a particular technology ...
 - Tend to be unaware of state in the art and practice of applied distributed systems
 - *x*BB example
 - Analogous to "security is just encryption"
 - Tend to hard code things at many levels
 - Ignorant/underestimate cyber security vulnerabilities (Idaho Krings & Oman)

Other Misc. Remarks

- Power industry has a tendency to latch onto a given technology (bridged ethernet, IPv6,)
 - Then stuck with it for decades
 - Much better to focus on what (non-functional/QoS) <u>requirements</u> you have, then have a middleware layer above the technology
 - This is EXACTLY why many industries (aerospace, trains, etc.) have been using middleware heavily the last decade or more
 - Good programs in DARPA & EC in last 10 years on this (QoSmanaged middleware)
- First Energy like problems can be detected with derived values & triggers
 - Subscribe to trigger on a minimum value of a derivative: among a set of variables, something should be changing over time...
 - More inter-utility data can be shared if auto-enabled only when nearing a crisis

Opinion: Joint IT-Power Research Needed!

- Premises
 - 1. Continued piecemeal expansion of the grid's communication capability (RAS/SPS) is unnecessarily expensive and does not meet even today's requirements
 - 2. Modernizing the grid must include communications
 - 3. Modernizing grid communications involves focused IT research
 - 4. This IT research should be done jointly with power researchers
- Without #4, we keep doing the same old things ...
 - CS researchers publish, claiming to solve part of problem
 - Never integrated into any complete end-to-end IT solution & fully evaluated in real environment
 - Power researchers publish with control and protection strategies assuming today's inflexible communications
- Prediction: #3,#4 will never happen without DoE/DHS or EC leading

Outline of Talk

- The Problem
- Interdisciplinary Observations
- GridStat Rationale & Overview
- GridStat Framework

Reality Check & Focused Opportunity

• <u>Unsolved problem</u>: providing

– Multi-dimensional QoS guarantees (latency, jitter, bandwidth, ...) for a

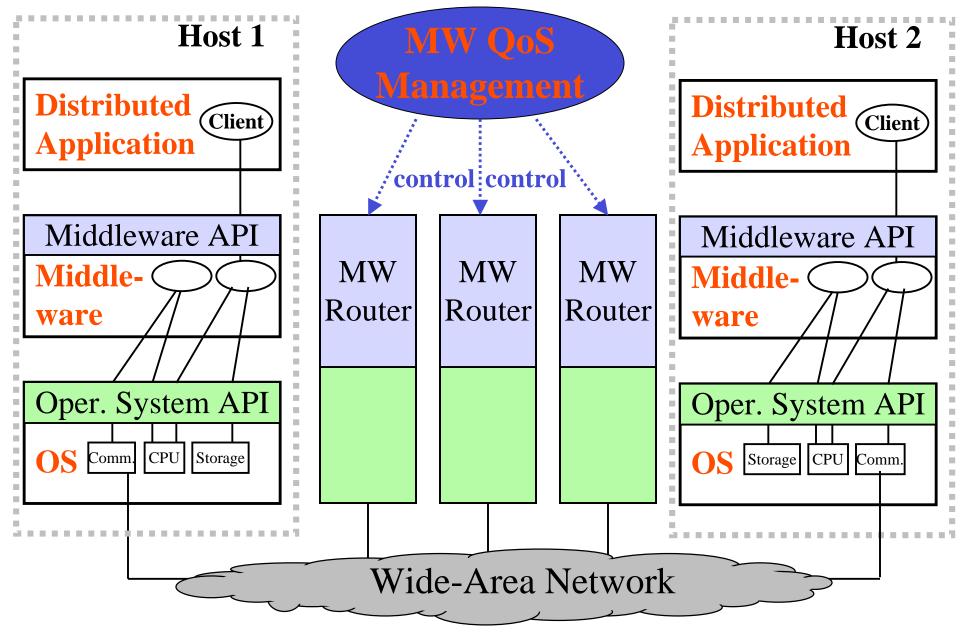
– Mixture of sophisticated and arbitrary application programs running on

– A dynamic network with arbitrary topology and subscriptions

Likely to be unsolved 20-30 years from now (general case)!

- <u>More solvable problem</u>: providing
 - Multidimensional QoS (softer) guarantees augmented by redundant paths and specialized routers
 - Delivering status updates and alerts for simple and predictable power grid applications
 - Static (almost) and predictable network topologies & subscriptions
- GridStat is working on this more solvable problem

GridStat Approach

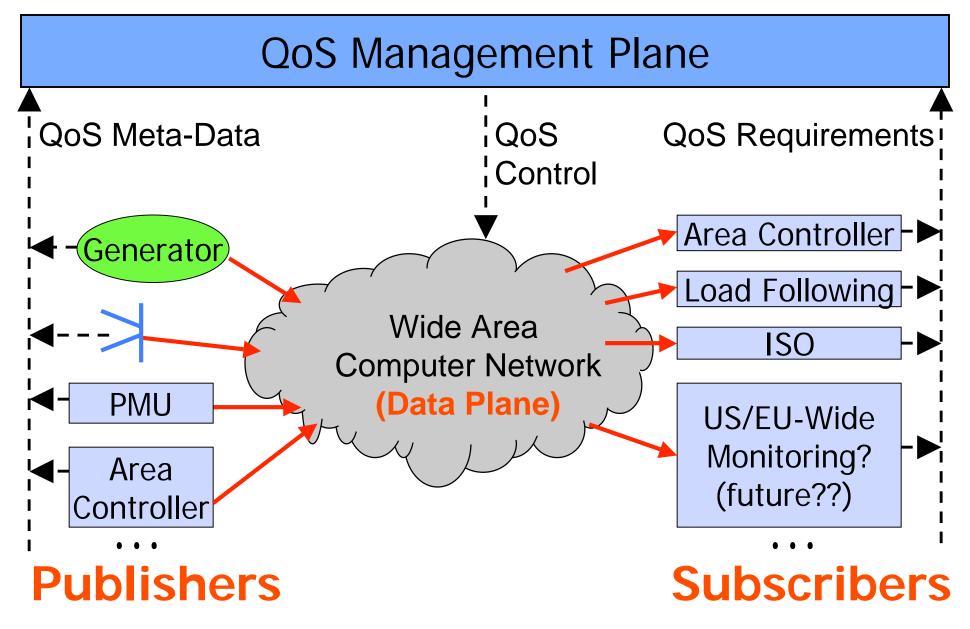

- Build pragmatic, comprehensive end-to-end framework
 - Extensibility & customizability are key (lots of hooks...)
 - Intended to extend to capabilities & scope of large power grid
- "Outside-In" not "Inside-Out"
 - lay down all the end-to-end plumbing, a la QuO
- Start with simple QoS & sub-optimal mechanisms
 - Hard QoS guarantees only if we control all access points
 - Provide QoS APIs & hooks to capture requirements to enable many more optimizations and more extensive management
- Extend over time for more coverage of
 - QoS guarantees
 - Adaptability
 - Security

With more QoS mechanisms, policy languages, validation,

GridStat is Publish-Subscribe Middleware

- Delivers status value updates (sensors, control outputs...)
- Simple, CORBA APIs for both publishers and subscribers, management/control infrastructure, etc. (.NET pubs/subs)
- Network of internal <u>status routers</u> (SRs) managed for QoS timeliness, redundancy and security
 - Middleware-level store-and-forward with rate filtering & multicast
 - Data plane kept separate from management plane
 - Forwarding latency ~0.5ms (Java) and 50K/sec on 3-year-old HW
- Optimized for semantics of status items
 - Not just arbitrary event delivery like generic publish-subscribe
 - Different subscribers (subtrees) can get different rates, latencies, #paths
 - Designed to allow many adaptations assuming semantics of status updates
- Goal: provide data availability via managed QoS & data load shedding

GridStat Middleware (MW) in Context

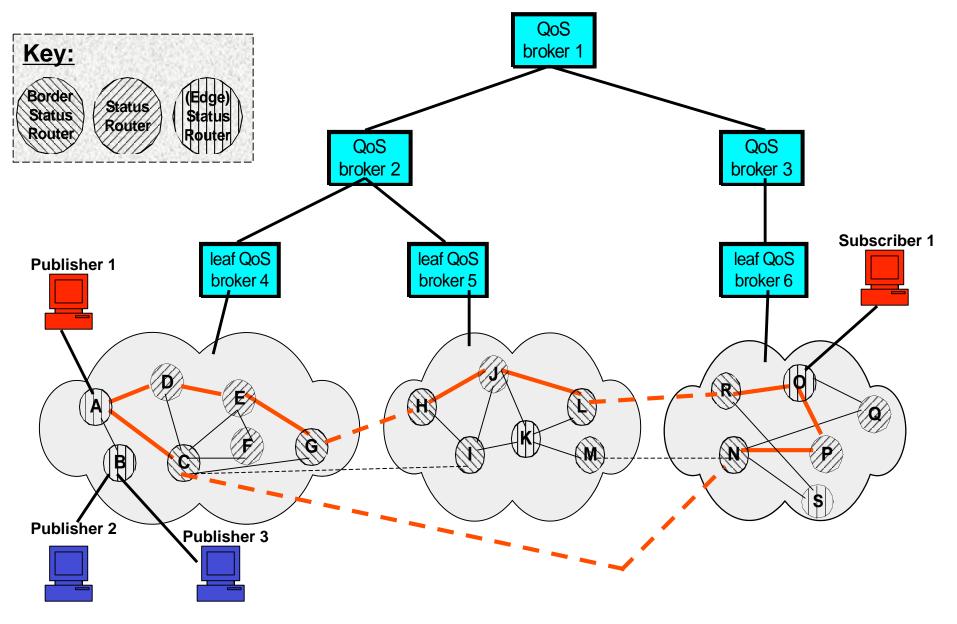

GridStat Capabilities: Subscriber-Side

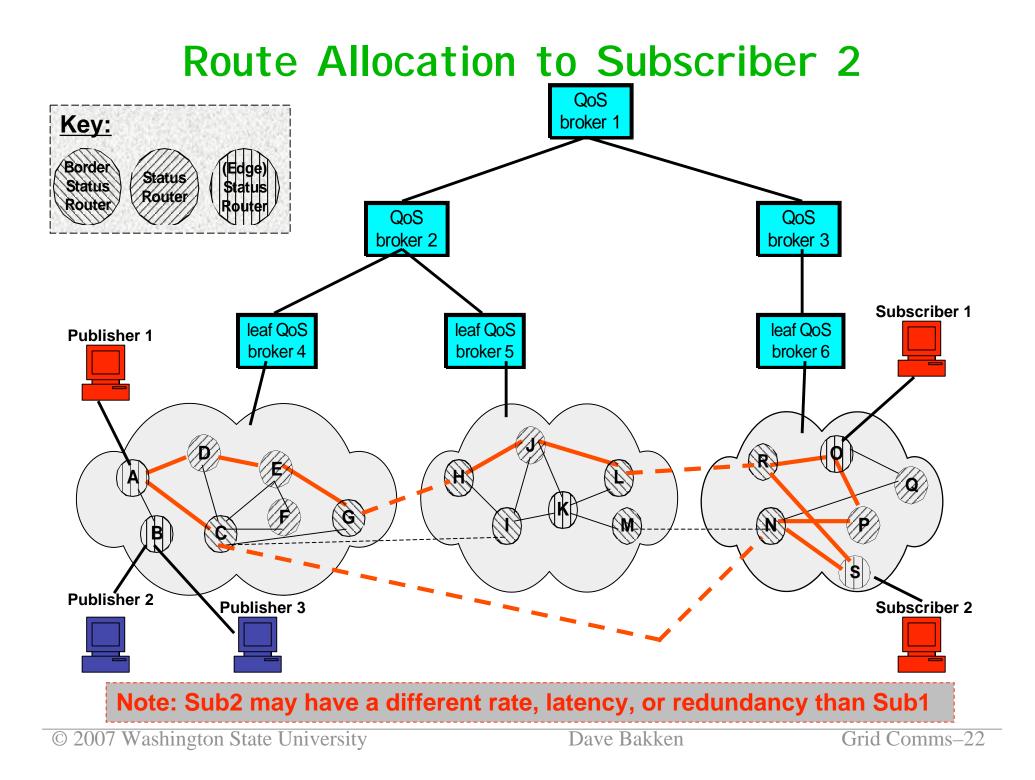
- Subscribe to status variable updates or alerts
- Subscribe to baseline status value or derived values
- APIs for status variable subscription:
 - Pull-from-Cache: (use directly in computations)
 - **Direct Push**: update via callback object
 - QoS Push [optional]: callback if specified QoS violated
- QoS specified: desired & worst-case latency, rate, redundant paths
- Extrapolation functions (preconfigured or customizable) compensate for omission failures of update delivery

GridStat Capabilities: Status Routers


- Rate filtering mechanisms at SRs and subscriber proxies
- Multicast with link reuse for efficiency
- Temporally synchronized rate filtering across different status update flows ...
- Condensation functions: user-extensible aggregation logic
- Preconfigured modes & mode transitions supporting "subscription bundles"
- Network transparent: run over multiple COTS networking technologies
 - IP, ATM (or lower fiber), network processors, ...
 - Run over dedicated lines, shared Internet, ...
 - Some baseline has to be dedicated (!!)

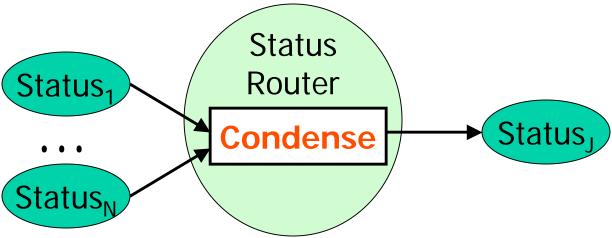
Basic GridStat Functionality


Outline of Talk


- The Problem
- Interdisciplinary Observations
- GridStat Rationale & Overview
- GridStat Framework

Note: GridStat handles routing decisions

Route Allocation to Subscriber 1


Filtering and Multicast

- Proxy in publisher filters stream of update events down to highest subscribed rate
- Status routers provide both rate filtering and multicast path sharing
 - Filtering drops status update events while preserving downstream subscribers' delay and rate requirements
 - Multicast ensures that a given status update even only sent out once for all downstream subscribers
- Rate filtering and multicast together both preserve *temporal synchronism* across multiple status update flows
 - Required by phasor measurement units (PMUs) for power grid state estimation (really measurement!)
 - E.g., pass thru update #1, #11, #21, ... for required flows
 - Must have same publisher rate (or multiple) & schedule (GPS)
- Future: filtering on change (% or Δ)

Status Semantics & Data Load Shedding

- Electric Utilities can do **load shedding** (I call **power load shedding**) in a crisis (but can really hurt/annoy customers)
- GridStat enables **Data Load Shedding**
 - Subscriber's desired & worst-acceptable QoS (rate, latency, redundancy) are already captured; can easily extend to add priorities
 - In a crisis, could shed data load: move most subscribers from their desired QoS to worst case they can tolerate (based on priority, and eventually maybe also the kind of disturbance)
 - Works very well using GridStat's operational modes
 - Note: this can prevent **data blackouts**, and also does not irritate subscribers
- Example research needed: systematic study of *data load shedding* possibilities in order to prevent *data blackouts* in contingencies and disturbances, including what priorities different power apps can/should have...

Condensation Functions

- *Condensation functions* allow applications to define new derived status variables
 - Sometimes subscribers just read a large set of status items once to calculate a derived variable
 - Supported by allowing user-defined condensation functions to be loaded in status routers
 - Building block for other mechanisms/capabilities
- Can be dynamically loaded into SRs

Condensation Functions (cont.)

- Creation with GUI-based tool
 - Specify input variables & four modules
- Modules
 - Input filter [optional]: filter status update events by value range
 - Trigger: initiates calculation; builtins:
 - Time triggered
 - Event triggered: received update events from x input variables
 - Alert triggered: received alerts from x of the subscribed input alert variables
 - Calculator
 - Init method
 - Calculation method
 - Output filter [optional]: like input filter
- Placed in cloud with input variables (present limitation)
- May evolve to status expressions (w/typing & QoS & inferrences)

Ongoing GridStat Research

- Ongoing GridStat Research
 - RPC over pub-sub with QoS & safety pre+post-conditions
 - Making modes global and hierarchical
 - Securing the multicast data plane
 - Securing the management plane
- Likely near-term work
 - Lots of likely short-term collaborations with other TCIP colleagues
 - Value error detection across multiple update paths
 - EC Framework Programme 7 collaboration

Related Work

- Key GridStat differentiators
 - Semantics of status updates
 - QoS management for rate, delay, redundancy
 - Rate filtering with multicast preserving temporal synchronism
 - Extensibility with application logic
- Pub sub frameworks (lots)
 - Real-time event channels
 - Content-based
- Power industry: IntelliGrid, UCA/IEC 61850,
- Probabilistic multicast (esp. gravitational gossip)
- CRUTIAL

Ongoing and Emerging Parnerships/Interest

- SEL
- Avista Utilities
- DoE EIPP (Eastern Interconnect Phasor Project)
- PNNL Electricity Infrastructure Operations Center (EIOC)
- INL SCADA Testbed
- TCIP Center (NSF CyberTrust, DoE, DHS August 2005)
 - Computer science award, working with power researchers
 - U. Illinois (headquarters)
 - Washington State University
 - Dartmouth College
 - Cornell University

Conclusions

- Interdisciplinary CIP research
 - Takes time and patience
 - Takes evangalization/outreach (and obvious learning)
 - Can be both frustrating and rewarding (usually lots of both!)
- GridStat is a flexible pub-sub middleware framework
 - Architected to be very flexible
 - Semantics of Status Dissemination
 - Managed for QoS
 - Demo in 2002, trial utility deployment since 2003
- Backup Slides:
 - Flexibility Needed for Grid Communications
 - A Few Examples of What GridStat Enables (above net. level)
 - More GridStat Details

For More Info

- Carl Hauser, David Bakken, and Anjan Bose. "A Failure to Communicate: Next-Generation Communication Requirements, Technologies, and Architecture for the Electric Power Grid", *IEEE Power and Energy*, 3(2), March/April, 2005, 47–55. Available via <u>www.gridstat.net/intro.pdf</u>
- David E. Bakken, Anjan Bose, Carl H. Hauser. EC Efforts in SCADA-Related Research: Selected Projects. Technical Report EECS-GS-008, Washington State University, 20 October, 2006. Available via <u>http://www.gridstat.net/EC/EC-SCADA-CIP-Report.pdf</u>
- IEEE Standard 1646, "IEEE Standard Communication Delivery Performance Requirements for Electric Power Substation Automation", 2004.

Backup Slides

- Flexibility Needed for Grid Communications
- A Few Examples of What GridStat Enables
- More GridStat Details

Next-Generation Grid Comms. Requirements

- <u>In summary: Flexibility and QoS!!!!</u>
- Status information can easily be made available to any legitimate participant at any location
- Status information is **<u>predictably</u>** timely and reliable
- Status information is protected against illegitimate use
 - Subscriber getting unauthorized status item
 - Subscriber "leaking" status info to others
 - Publisher sending bad status data (accidentally or otherwise)
- Crucial point: you can't just "plug in a network"
 - When you need it most it will be least available
 - Higher-level software needed for quality of service (QoS) management, IT failure recovery, adapting to cyberattacks, ...
 - Dedicated fiber alone is insufficient ... not an "end-to-end" solution

Flow of Operational Status Data [A. Bose]

- Much status data on the power grid exchanged for operation and control
 - Breaker status
 - Voltages (and some angles) at all buses
 - MW, MVAr at generators, load feeders and transmission lines
- Increasingly needs to go to multiple entities
 - Control center (plus backup control center)
 - Regional security coordinator (ISO/RTO)
 - Control centers of neighbors
 - Partners in ancillary services
 - Special controls or monitoring (SPS, WAMS, etc.)
- Data availability and usage depends on
 - Data measurement frequencies
 - Data transmission rates

Problems with Recent Trends [A. Bose]

- SPS/RAS is too expensive for widespread use
 - Hardwired communication is inflexible, changes require new installation
 - Even the settings require continual updating, which requires expensive off-line studies
 - Coordination of such piecemeal SPS installation is complex and error-prone
- WAMS design cannot be sustained for dramatic increase of PMU installation
 - PMUs are getting cheaper and will become part of local protection systems (e.g. SEL421)
 - Much higher bandwidth needed to move all that data
 - Data has to be moved to where the control is determined (rather than to some central controller)

Why Gridstat Flexibility Needed [A. Bose]

- All data collected at high frequencies cannot be brought into the central EMS/SCADA of one Control Area (let alone for the whole interconnection)
- The right data needs to go to the right computer at the right frequency depending on the function
- The functions and the data needs change over time and this arrangement for moving data must be very flexible
- The monitoring, operation, control and protection of the power grid should be changeable by software alone

Monitoring and Control w/Gridstat [A. Bose]

- Consider SPS/RAS
 - An existing SPS can be updated or a new SPS installed <u>solely by</u> <u>software</u>
 - Change input data
 - Change logic
 - Change output (control) signals
 - Instead of using off-line studies to set the controls every few months, use on-line computation to adapt the controls continually
 - Such on-line computation can be done using real-time data
 - Will need dedicated computer to do so
- Consider PMU and WAMS
 - PMU data could be handled just like any other data (the distinction is already blurring)
 - Monitoring of today can be extended to control tomorrow

The Crux of the Matter

- Continued piecemeal expansion of the grid's communication capability is unnecessarily expensive and does not meet even today's requirements
 - Lack of situation awareness major contributor to slow blackout response (US, Italy)
 - SPS/RAS deployment is very expensive
 - New control and protection schemes infeasible without better communications
- Desire: A more flexible alternative that can meet evolving communication needs of the grid
 - Without cheaper and more flexible communications, power researchers are unlikely to experiment with new communications topologies and control/protection schemes utilizing them
 - Without better control & protection schemes the full benefit of improving the grid's communications cannot be realized

Backup Slides

- Flexibility Needed for Grid Communications
- <u>A Few Examples of What GridStat Enables</u>
- More GridStat Details

Multi-Level Contingency Plannning & Adapting

- GridStat supports <u>operational modes</u>
 - Can switch routing tables very fast
 - Avoids overloading subscription service in a crisis
- Example: Applied R&D on coordinated
 - 1. Power dynamics contingency planning
 - 2. Switching modes to get new data for contingency
 - 3. New PowerWorld visualization specific for the contingency

involving contingencies with

- A. Power anomalies
- B. IT failures
- C. Cyber-attacks
- Note: state of art and practice today: 1 & A only, offline

Example: Early-Warning System w/Triggers

- Simple benefit of GridStat: allow selective sharing of some key status variables, decided dynamically and
- Example: simple early-warning system
 - Cooperating power companies publish key leading indicators of problems, for cross-checking
 - Ideally: choose good indicators but not market sensitive
 - Virtually everything could be market sensitive, caution not sharing
- Solutions
 - #1: publish derived values (rate of change, ...) not direct values
 - #2: alert-triggered temporary subscriptions for contingencies
 - #3: Add aggregation in QoS broker and policies to allow simple specification of thresholds of #alerts, etc.
 - Note: #2 and #3 are not yet implemented, but quite doable in a year with 2 Computer Science MS projects & 1 companion EE power MS project.

Backup Slides

- Flexibility Needed for Grid Communications
- A Few Examples of What GridStat Enables
- More GridStat Details

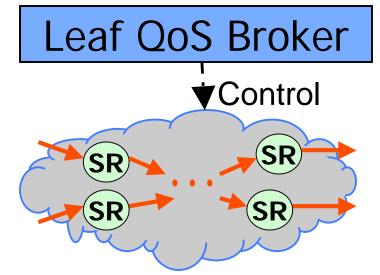
GridStat Entities

• Publisher:

- Publishes status events, the value of the status variable at that time.
- Most of the publications are periodic, published at a given rate.
- Some of the publications are alerts, which are only published when something unusual happens.

• Subscriber:

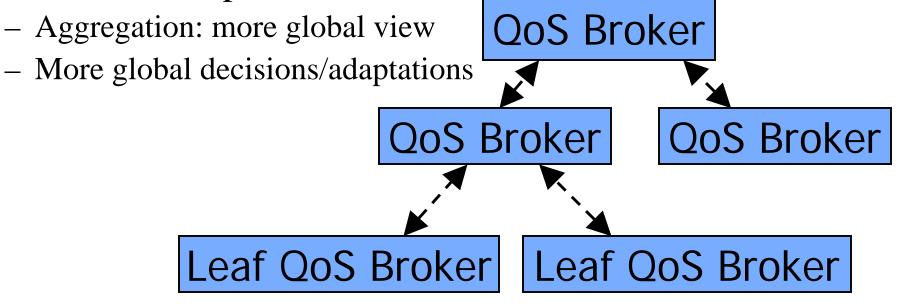
- Subscribes to status variables by giving the name of the status variable along with its QoS requirements.
- Will only receive updates for variables that it has subscribed to.
- Multiple subscribers may subscribe to the same status variable.
- Can request <u>multiple redundant (disjoint) paths</u> from publisher


GridStat entities (cont.)

• Status Router:

- It forwards status events according to its routing table. The routing table is populated by the leaf QoS broker.
- Like an IP router in that it forwards messages, but with additional ability for:
 - Optimized multicast
 - Operational modes
 - Filtering
 - Adaptive message packing
 - ...
- The set of status routers can be viewed as a message bus for status events

GridStat entities (cont.)


- Leaf QoS broker:
 - Controls one administration domain (its resources), called a cloud.
 - Allocates paths from the publishers to the subscribers that will satisfy the specified QoS requirements.
 - Does this by issuing commands to the SR in its domain to add/remove routing entries.
 - Communicates with the rest of the management through a connection to its parent QoS broker.

GridStat entities (cont.)

• QoS broker:

- Hierarchical supervision of the leaf QoS brokers.
- Controls the global resources provided by the different domains, through policies.
- Allocates paths from the publishers to the subscribers (that are in different administration domains) that will satisfy the specified QoS requirements.
- Future: natural point for

Alerts

- Report abnormal conditions requiring attention (or tracking)
- Bypass status variable queues at SRs with high priority
- Two types
 - Subscribed alert
 - Flooded alert
- Subscribed alert: similar to boolean status variable
- Flooded alert
 - Not subscribed to
 - Flooded USENET-style to a given level in QoS Broker hierarchy
- Trigger mechanisms presently implemented with condensation functions (later direct impl.)