Application Aware Detection:
!L The Trusted ILLIAC Approach

Ravi K. lyer

(Joint work with Wen Meil Hwu, Klara

Narhrstedt, Z. Kalbarczyk, William Sanders

Coordinated Science Laboratory and
The Information Trust Institute
University of Illinois at Urbana-Champaign

http://www.csl.uiuc.edu

Crash Latency Distributions for
(Linux on Pentium P4 and PowerPC G4)

Early detection of
90%. kernel stack overflow
80% | on PPC major

70%- o Pentium|—

R — contributor to reduced
crash latency

Latency in Stack

Percentage

3k 10k 100k 1M 10M 100M 1G >1G
CPU Cycles

Breakdown of Vulnerabilities
(Bugtraq)

Unknown Access Validation Emor O Access Validation Error
6% 10% m Atomicity Error

OBoundary Condition Error

O Configuration Error

B Design Eror

O Environment Error

m Failure to Handle Exceptional Conditions
O Input Validation Error

Configuration Emor m Origin Validation Error

3% 2%

Boundary Condition
Error
21%

Input Validation Error
23%

Failure to Handle 5% m Race Condition Error
Exceptional Co nditio ns 1% Design Error O Serialization Error
1% B% @ Unknown

*Access Validation Error : an operation on an object outside its access domain.

*Atomicity Error: code terminated with data only partially modified as part of a defined operation.
*Boundary Condition Error : an overflow of a static -sized data structure: a classic buffer overflow condition.
*Configuration Error: a system utility installed with incorrect setup parameters.

*Environment Error: an interaction in a specific environment between functionally correct modules.
Failure to Handle Exceptional Conditions : system failure to handle an exceptional condition generated by a functional module, device, or
user input.

eInput Validation Error : failure to recognize syntactically incorrect input.

*Race Condition Error : an error during a timing window between two operations.

*Serialization Error: inadequate or improper serialization of operations.

*Design Error and, Origin Validation Error : Not defined.

Trusted ILLIAC: Application Domains

* Wireline and wireless users
» Multiple computing platforms
* Distributed communications
» Heterogeneous information
 Variable level of trust

—D |

—=] Computing
——& Network

—

= Fabric

» Multilevel/hierarchical

information abstraction

* Integrated analysis and

visualization '
» automated and with
human in the loop

Gateway

Gateway

» Data Centers: High fidelity,
reliable and secure data mining,
processing and communication
engines

» Data caching and authentication
of information

’ RUSTED ILLIAC

Goal: Application-Centric Trusted Computing

Create a large, demonstrably-trustworthy, computing platform
= Application centric reliability and security
= Reconfigurable; High performance

Support for

= Enterprise computing with seamless extension across wireline-wireless
domains

= Applications: Services, Client specified level of privacy and security
Educate a new generation of students

Underlying Research Support: NSF, HP, AMD, IBM, Intel, GSRC. lllinois,
Commerce Dept..

Application Aware Trusted Computing

Applications-specific level of reliability and security provided in a
transparent manner, while delivering optimal performance
Customized levels of trust (specified by the application)

= enforced via an integrated approach involving
= re-programmable hardware,
= New compiler methods to extract security and reliability properties
= Run time framework to enforce diversity
= configurable OS and middleware

Scale from few nodes to large networked systems
Enable inclusion of ad-hoc wireless nodes

Checks

i o Identify critical variables and their location —
Re||ab|||ty within a program to place detectors for best Secu r|ty
»Construct dynamic dependence »Use knowledge of the application
graph of the program via profiling semantics to identify security critical
»Apply heuristics, e.g., fanouts variables, e.g., a password

metric, to identify critical variables

Static program analysis
Compute backward slice of program variable
along each program path starting from the
program point at which the critical variable is
located

» Generate correctness checks for data »Generate checks to verify that the value is
values in critical program locations produced by a legitimate set of instructions
» Check encoded as path optimized »Check encoded as the set of objects to
sequence of instructions which an instruction is allowed to write

»Runtime checking

»Implementation in software or
programmable hardware

Compile
Time

tware Execution Model

Source code

User
Runtime

Kernel
Runtime

User level function or device driver:

- Soft object
|:| Hard object

Seamless integration of
hardware accelerators into the
Linux software stack

Compiler supported deep
program analysis and
transformations to generate
CPU code, hardware library
stubs and synthesized
components

OS resource management

Model-Driven Trust Management

P rving system health using adaptive recovery
... when the precise cause of failure is unknown
Monitoring in one layer, fault in another

Poor localization, false positives and negatives

when several recovery options are available
Restart or fail-over of component, host, entire system

Get more diagnostic information

Measured Action MOdeII of
Durations > Faults
SNMP Monitor Observations SNMP Actions
> Monitors,
Manager Rewards
,---—---—--——-———-§
|| HTTP1 Webl | | Appl Restart |) : l
| Monitor Server \ "1 server | Restart [17] Bayesian |, eI
Update
| HostA 4 I . i RA-Bound
| o0 DB I Future Diagnosis
| S50% C | Outputs Vector RA-Bound
I v
|| HTTP2 Web2 / o APP2 Trajectory Tree Bounds
| L Monitor Server S0% Server Reboot |1~ Computation ‘_ Improvement
HostB . A (sim mode)
| Disable 'I)
\ Target system Adctigns PiDP
online Recovery Offline

Engine

Validation Framework

n integral part of the Trusted ILLIAC
Quantitative assessment of alternative designs and system solutions

Provides tools for
= Analytical models (e.g., MOBIUS)
= Simulation (e.g., RINSE)
= Experimental validation (e.g., NFTAPE)
= Fault/error injection
= Attack generation
= Run-time monitoring and Diagnosis
= Measurement and Benchmarking
Crucial in making design decisions, which require understanding

tradeoffs such as cost (in terms of complexity and overhead) versus
efficiency of proposed mechanisms.

Application-Aware Checking: An Example

Proc r, framework, and
modules part on the same
core.
Pipeline
= Modules
Qo
(] .
L
8
-
£
i)
£
= >
. <)
2
]
E >
e 5
i
S
\ S
\‘ S~o ~
\ S
\ N
\ ‘ IF ‘ ID ‘ EX ‘ MEM ‘- Cohmit\L
\ ~
\ S
\ INST Reg#/ ALUResult Data Loaded (‘ommi'lu S~o
\ Reg Vals Addr/NextPC From Memory Squash S~o
\ N
1
1 Fetch Out 25
Mem RegFile_Data ERn
Execute_Out g g
Mem Rdy | | Manager Memory, Out g
| Commit_Out 1
i] 1 i
Pre -emptivve Prm:e:ssv . - Pointer i
Control -flow Health RS:IECC;Q;; Taintedness Harcclivvlare
Instruction Checking Monitor P Tracking MiEs
Queue 1 1 1 4
RSE Framework

Reliability and Security Engine

Reconfigurable processor-level hardware

framework

Provides HW modules for reliability and security
- Modules and framework interface

Reco-

Chkpt very

Assertion-Based Checking

- Automatic generation and
software/hardware
implementation of error
detectors

Node 1 Node 2

Microkernel

Daemon
Detection | Process TCP Connec tion
Policy Mgmt.
Node 3
Daemon
Daemon

Tr u Sted Remote daemons
middleware

Microkernel

,‘k Application

Local Manager

Crash | |Hang
dete-| |dete-

e B Configuration

Interface |
-) -) / Control
Application Failure Mitigation Driver (} ------ @

OS Driver

OS Kernel

” OS: Security Micro-Kernel

Q@plic—transparent OS-level

checkpointing
OS health monitoring

| Application-aware error detectors

= Provide application-specific error detection at low-cost for
high-performance platforms
= Limit error propagation and reduce error detection latency

= Automatically derive fine-grained detectors to
= Maximize error detection coverage
= Minimize performance impact

= Implement in software / hardware

Approach

: Placement
Determine where (program
location and variable) to place
detectors for best coverage
Dynamic Static
Analysis § Analysis

Instrument application to Perform backward slicing
observe values at § Reliability on application code from
detector points and form pg & the detector points to form
assertions based on Security a minimum symbolic
these values § expression

Check assertions using a
combination of software and
hardware

Runtime

| Where to Place the Detectors?

Choose variable to check and location to place the
detector

Starting Point: construct Dynamic Dependence Graph of
the program

Compute metrics to choose candidate points for detector
placement

= e.g., fanout, lifetime

Evaluate detectors placed according to different metrics
= Fault-injections into data

Coverage for Multiple Detectors

o DetectiondProbabiity e
N E » o] = N

o

Crash Coverage Vs Number of Detectors (gcc95)

—=— Fanouts

Lifetimes

Random

—— Execution

—— Propagation

—+— Cover

1 _
i *
I 1
i
I 1
1
[1 [
!
i 1
1 1
]]
1 1
[I T [l T T T
0 20 40 60 80 100

Bin Size

120

gcc95 benchmark

m Coverage for crashes:
= 80% with 10 detectors,
97 % with 100 detectors
m Coverage for fail-silence
violations (silent-data
corruptions)
= 60% with 10 detectors,
80 % with 100 detectors
= Benign errors detected
= 4 % with 10 detectors,
10 % with 100 detectors
m Placing detectors randomly on
hot-paths:

= Need ~100 ideal detectors to
achieve 90% coverage

Reliability Checks

oal: Automatically derive runtime error detectors based on application
properties and implement them in hardware/software

Approach:
= Placement of error detectors for maximum coverage and to minimize error
propagation
= Dynamic learning approach to derive detectors for the critical
variables/locations
s Static program slicing techniques to form checking expressions for critical
variables/locations
Faults addressed

= Hardware errors: computation errors, cache/memory errors, instruction
fetch/devode errors, some control flow errors

= Software errors: Uninitialized values, memory corruption errors, timing
errors that impact values, Some semantic errors in program

Implement checking expression in hardware as part of RSE

Example 1: C Code (matrix mult.)

void rInnerproduct(float *result, float a[rowsize+1][rowsize+1], float b[rowsize+1][rowsize+1], int row, int column) {
/* computes the inner product of A[row,*] and B[*,column] */
int i;
*result = 0.0;
for (i = 1; i<=rowsize; i++)
*result = *result+a[row][i]*b[i][column];

¥

void Mm (int run) {
inti, j;
Initrand();
rinitmatrix (rma);
rinitmatrix (rmb);
for (i=1;1<=rowsize; i++)
for (j = 1;) <=rowsize; j++)
rinnerproduct(&rmrl[i][j],rma,rmb,i,j);

Example 2: Intermediate Code

void rInnerproduct(double* result, double* a, double* b, int row, int column) {
loopentry:

br tmp.2, label no_exit, label loopexit
no_exit:

tmp.7 = load a_addr

tmp.8 = load row_addr

tmp.9 = getelementptr tmp.7, tmp.8
tmp.10 = load int* %i

tmp.11 = getelementptr tmp.9, 0, tmp.10
tmp.12 = load tmp.11

tmp.13 = load b_addr

tmp.14 = load i

tmp.15 = getelementptr tmp.13, tmp.14
tmp.16 = load column_addr

tmp.17 = getelementptr tmp.15, 0, tmp.16
tmp.18 = load tmp.17

tmp.19 = mul tmp.12, tmp.18

tmp.20 = add tmp.6, tmp.19

store tmp.20, [tmp.4]

br label loopentry

Example 3: Transformed Code

dd tmp.6, tmp.19

path2-8:
new.2.tmp.19 = mul tmp.12, tmp.18
new.2.tmp.20 = add 0.000000e+00, new.2.tmp.19
br label Check-8

path3-8:
new.3.tmp.19 = mul tmp.12, tmp.18
new.3.tmp.20 = add tmp.20.copy, new.3.tmp.19
br label Check-8

path4-8:
new.4.tmp.19 = mul tmp.12, tmp.18
new.4.tmp.20 = add tmp.12.copy, new.4.tmp.19
br label Check-8

| Results: Crash Pre-emption

Performance overheads with 5 critical variables per function

IntMM RealVM Oscar Bubblesort Quicksort ~ Treesort Perm Queens Towers Health em3d mst bames-hut tsp Mean
Benchmark

‘D Baseline m® Modifications o Checking ‘

Crash Pre-emption with 5 critical Average Performance Overhead
variables per function »Checking Overhead = 25%
»Modification Overhead = 8%

»Total Overhead =33 %

0 Before Crash

® Before Prop Average Coverage (Crashes)

“ Undetected »Before Propagation = 64 %
»Before Crash = 13%
»Total Coverage =77 %

Static Analysis for Security

¥ . Prevent access to critical Data; Memory
corruption attacks
o IS to preemptively protect "security-critical data"

regardless of vulnerability
= Can be accomplished by enforcing the source-code semantics on the
program binary
¥ . Encode the entire sequence of dependencies for

the critical location, and check that the sequence is not
violated during runtime.

= Static Analysis is performed by the IMPACT compiler

= Runtime Checking is performed as an RSE module

Information-Flow Signhatures
se detection of program data-flow violations as an
Indicator of malicious tampering with the system

= prevent an attacker to exploit disconnect between source-level
semantics and execution semantics of the program

m Security critical variables chosen based on app semantics
= Employ a compile-time static program analysis to

= extract a backward slice which collates all dependent instructions
along each control-path

= form a signature, which encodes dependences as a set (or
sequence) of instruction PCs along each control-path

= Compute runtime signatures for each critical variable
= [rusted bit associated with each instruction
= only trusted instructions can update runtime signatures
= check signatures for instructions with trusted-bit set

Security Checking 1: How do signatures
detect attacks ?

ain()

{

char password[8] = "asecret";

char userpass|8]; . i

printf(“Enter Password:\n"): Attacker enters “attack! attack!

gets(userpass);

if(strncmp(userpass,passworﬁT)——O)
printf("Success\n");

10 else

11 printf("Failed\n");

12 }

.-
2
3
4
5
6
8
9

User enters “password”

Critical Variable: char password[8]; Signature: {3}

the entire dependency tree?

| Security Checking 2: Why do we need to encode

1 int authenticate(char* username, char* password)

2 {
3 int authenticated=0; :
int result: ﬁﬂ%?ﬁél’(%rr %%F\%ﬁﬁ'ﬁé’fﬁﬂﬁ%ﬁ?ﬁated
’ _ Bsulidrstiagast & ing that it can
char tmpbuf[532;) - be used to influencgé
6 result = Istrncmp(“asecret”,password,7); authenticated
7 snprintf(tmpbuf,sizeof(tmpbuf),”user: %s”,user);

8 tmpbuf[sizeof(tmpbuf)-1] = \0’;
9~syslog(LOG_NOTICE,tmpbuf);
10 authenticated |= result;

Critical Variable: char authenticated; Signature: {10,6},{3}

Critical Variable: char authenticated; Signature: {10},{3}

SSH Authentication Function

sys_auth_passwd(Authctxt *authctxt, const char *password) {

struct passwd *pw = authctxt->pw;

char *encrypted password;

' word-if-authctxt is invalid */

char *pw_password = authctxt->valid ? shadow_pw(pw) :
pw->pw_passwd; /*Critical Variable Definition*/

/* Check for users with no password. */

3: If (strcmp(pw_password, ") == 0 && strcmp(password, ") == 0)
return (1);
/* Encrypt the candidate password using the proper salt. */
4: encrypted password = xcrypt(password,

(pw_password[0] && pw_password[1]) ? pw_password : "xx");
/* Authentication is accepted if the encrypted passwords match */
return (strcmp(encrypted_password, pw_password) == 0);

a1

Critical Variable: pw_password

Security Checking:
How Do Signatures Detect Attacks ?

int main()
{ Attacker overwrites

“password”
char password[8] = "a_secret"; g

char userpass[8]; ‘\

User enters “password”
D

gets(userpass);
If(strncmp(userpass,password,7)==0)

1

2

3

4

5 printf(*Enter Password:\n");
6

8

9 printf("Success\n");

10 else
11 printf("Failed\n");
12 }

Critical Variable: char password[8];
Signhature: {3}

Security Checking: Why Do we Need to Encode Entire
Dependency Tree?

1 int authenticate(char* username, char* password)

- { Attacker overwrites authenticated via
int authenticated=0; the format string attack

char tmpbuf[512];
However;-smarter attacker can

result = strncmp(“asecret”,password,7); overwrite result instead, realizing
that it eventually writes
authenticated

tmpbuf[sizeof(tmpbuf)-1] = \0’; New Signature: {10,6},{3}

syslog(LOG_NOTICE,tmpbuf); :
PR

5
6
7 snprintf(tmpbuf,sizeof(tmpbuf),”user: %s”,user)
8
9

10 authenticated |= result;

Critical Variable: char authenticated:

Trusted Microkernel

/ Sys/l—ang
Detection

4 App./ITang
Detection

/ App.ash
Detection

Tranapp.

Chkpt

operation req. i

...
operaunon configuration
req. operation req. l T event RMK core
RMK pins
. event/

operation request

-==v= Mmanagement

== configuration

Hardware Prototype: Reliability and
Security Engine

Halt Signal

Security Checks Reliability Checks

Trusted ILLIAC: The First Hardware

Provide applications-specific level of
reliability and security, while delivering
optimal performance

Customized levels of trust enforced via
an integrated approach involving:

- re-programmable hardware,

- compiler methods to: (i) extract security and
reliability properties and (ii) accelerate
computation

- configurable OS

wmrusted ILLIAC: The Broader Context

Pipeline

x New ex
secure

Microkernel

t compllers
ardware-._

e Regit || awresur n.mmt comi

v | FeOVe | deitenr) Foneory

OS Kernel

- N
N
{ Squash .. i o ‘%: [==] .
. 1 i i Fetch_Out % i i \\
ReoFie_Dan —
1 oo § == AN
wemoy 0w & N
T T Conmi_ou ~
! 1 — N
1 - i 1 Configuration \\
Pre-empt Pi ointer Interface -
e e el e B Aoplication Failure Mitioation Dr Control N
Checking | | Monitor tacking pplication Failure Mitigation Driver | (O)---- Console N I aC
RSE Framework T N
com p u o ™

s Enable univer ~ —__ °

| Source code |

) ’
d m
a.n govern Compile m

= Train the nex ™™ |i ,i /

of system de: (= i nals

Kernel
Runtime

Example Trusted
ILLIAC Node

User level function or device driver: - S ObJ?Ct
|:| Hard object

Broad Research Support

National Science Foundation
= Programmable Hardware and infrastructure support

Intel: Hardware/processor-level detection and recovery techniques

= Reliability and Security Engine (RSE), a processor-level framework to deploy low-overhead
application-aware error detection and recovery mechanisms

IBM: benchmarking and enhancing reliability of operating systems

= Develop methods for assessment of operating system robustness
= Targets IBM AIX OS, Linux, Sun Solaris

Motorola: security and reliability for wireless platforms

= A testbed to explore seamless reliability issues and provide low-cost detection and recovery for
wireless devices (e.g., cell phones) and networks..

SUN
= RAS (reliability, availability and serviceability) architecture of next generation dataservers
= Processor-level error detection and recovery support

HP

= Reliable and secure enterprise computing
= Deployment and automated generation of application-aware detection and recovery techniques

Building a Security or Reliability Case

An overall Reliability & Security Case
for these of Trusted ILLIAC for
~sEparticular ceitical ap plication is

le.b y%omb/ng multiple

s of evidce nto an

Dataton
\\\\\\\ ss. _—
i a\
Contdersalty of oy A
o) "
MMMMM
10 Confersaty 10
T S
{aid o desgn
‘‘‘‘‘‘‘‘‘ o A
oo i
Commneations
o
A o o
o
Yo
mmmmmm ise N
o Faraof =
as S
xqis
mmmmmm
Warduired Ecticaly Physically
ot Causss Dosooes Do
mmmmmmmmmmmmmmmmmmmm Tagestor Mo
Seecion oo Gtar - propagaterom Lossol10 .
voraris cumsocae /) [[comdmiay ousseme
/\ / Platform
=
v Q
Evidenee cen] S
: 4 4 -
. A
4 C / 7 I
L7 Sensor SeA2: Sensor Sen
Nam Daecinboay Detecon Co
et i Rete

processed successtuly
stccesshuly

~ oo e o o
B - Suapane v =)
Isolation of A e Ing G &= o Fur SeAL: nsor ot Cont
- PSQ Ser in P o layer Integrity Confic " False tectior reator
Cutoff orecness. Probabiity False Alarm
’, ‘ Rate
N oo
mmmmmmmmmm PP can ety
wesee o . o Wi
o U Ergy o1 bc [S Experimental
() wslay (] e - S
S "

Platform echarisms Process Dom:
\\\\\\\\\\\\\\\

w/ Info

Type Enforcement Hardened Kemel IKENA StomWatch

Absence of
Insider Thieat

= Experimental Results/ -

ADF Protocol Polcy Server
nialzaton iakzaton oD Common

Independence Cortectness. Contientaty

Application Aware Checking in Hardware: Reliability

and Security Engine (RSE)

Goal: Provide application-aware checks for
reliability and security

s Approach: Reconfigurable processor-level

hardware framework — Reliability and Security
Engine
Current features

= On-core approach — processor, framework, and
modules part of the same core on a single die

= Framework and modules implemented on an FPGA

= Framework configured to: (i) embed modules
needed by application and (ii) route inputs to
modules
Available modules

= Transparent hang/crash detection for OS and
applications

= Automatic processor-level checkpoint and recovery
= Malicious attack detection and masking
Area and performance overhead of RSE
iImplementation

= Area increased by 9.4%
= Maximum clock period increased by 5.9%

Pipeline

~
-

[=——>

[——>

§=>
s

[——>

Framework Interface Fabrif

95—

Modules

On-core approach

Reliability and Security Engine:
I mplementathn Input Interface:

Queue Size =16
e | [imsteton-Fean Jo—| R RSE Framework 32-bit regs = 80;

T 2entry 1) Gate Count = 12K
Instruction-Address Fetch Buffer In p ut interfac.
Translation Buffer e e | _ IistiReeht
) N 7" nstReq2
e _______ | _|_ InstrReg3 _
_____________________ L InstiRegd_
VARV - ROBAIbcPtrl ()
/7 Instruction Register | ROBAlocPtr2 (1)
- Decoder - File ROBAlocPtr3 (7) Instruction
Dispatcher ROBAllocPtrd (1) Checker
‘ ‘ R N st 4 Module
\
o __ I I I oL Ll 1susra_
0————— -1 D I I IR —JdL_ _ALUSIc2 _ Memory
N ooood ________.______M_DU_SLCZ_* Layc!ln_
v L v L J J v Randomization
" IssueLSU (i
Load / Store Integer Multiply / Branch IssueALU (7). |
Unit Unit Divide Unit Resolve Unit IssueMDU (1)
Adaptive
Heartbeat
@ - d— - _|- - _|] woupataout_ Monitor
4 - TAwubawout "
I_______ ~ 7 - soeitadar”)
Py A Data
$——"--- | Yy v v v LoadFromALU (/)i 1!
: i LoadFromMDU (7)! | Dependency
L Data- L Write- i Reorder | LoadFromLsu 1y | Tracker
Cache Buffer I Buffer
i U
1
Data-Address Arbiter [€7- ! Commit-Unit
Translation Buffer B — . M| commi out
T T ey
1 [N [1 CUCommitInstr: X4 ntry !
1 : 1 1 | --___--------_-.- / YVY
: ! : : L oo - e R Instruction : Module
1 : : L check _ _ _ _ _ o _______ || Output |g | Enable/
. N . 1 b .
Fetch / Dispatch Width |4 instructions v L checkuald) Queue ¢ Disable
Issue width _ 4 instructions Bus-Interface | _ o+ _____________ | Lsupatout | M| [
RUU/ LSQ size 16/8 entries Unit | u Entry 7
Instruction L1 cache _|Size: 8 KB, 1-way associative i X
" . 1 =l PUi—
Data L1 cache Size: 8 KB, 1-way associative el i YezBEmIED (1) Memory
. . . . 1
Instruction L2 cache |Size: 64 KB, 2-way associative Xorna | Memory Access Request Mem_Rdy N Access
. B P .. i —>
Data L2 Cache Size: 128 KB, 2-way assodiative Meny Unit

