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Breakdown of Vulnerabilities
(Bugtraq)
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*Access Validation Error : an operation on an object outside its access domain.

*Atomicity Error: code terminated with data only partially modified as part of a defined operation.
*Boundary Condition Error : an overflow of a static -sized data structure: a classic buffer overflow condition.
*Configuration Error: a system utility installed with incorrect setup parameters.

*Environment Error: an interaction in a specific environment between functionally correct modules.
Failure to Handle Exceptional Conditions : system failure to handle an exceptional condition generated by a functional module, device, or
user input.

eInput Validation Error : failure to recognize syntactically incorrect input.

*Race Condition Error : an error during a timing window between two operations.

*Serialization Error: inadequate or improper serialization of operations.

*Design Error and, Origin Validation Error : Not defined.




Trusted ILLIAC: Application Domains

* Wireline and wireless users
» Multiple computing platforms
* Distributed communications
» Heterogeneous information
 Variable level of trust
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Goal: Application-Centric Trusted Computing

Create a large, demonstrably-trustworthy, computing platform
= Application centric reliability and security
= Reconfigurable; High performance

Support for

= Enterprise computing with seamless extension across wireline-wireless
domains

= Applications: Services, Client specified level of privacy and security
Educate a new generation of students

Underlying Research Support: NSF, HP, AMD, IBM, Intel, GSRC. lllinois,
Commerce Dept..



Application Aware Trusted Computing

Applications-specific level of reliability and security provided in a
transparent manner, while delivering optimal performance
Customized levels of trust (specified by the application)

= enforced via an integrated approach involving
= re-programmable hardware,
= New compiler methods to extract security and reliability properties
= Run time framework to enforce diversity
= configurable OS and middleware

Scale from few nodes to large networked systems
Enable inclusion of ad-hoc wireless nodes



Checks

i o Identify critical variables and their location —
Re||ab|||ty within a program to place detectors for best Secu r|ty
»Construct dynamic dependence »Use knowledge of the application
graph of the program via profiling semantics to identify security critical
»Apply heuristics, e.g., fanouts variables, e.g., a password

metric, to identify critical variables

Static program analysis
Compute backward slice of program variable
along each program path starting from the
program point at which the critical variable is
located

» Generate correctness checks for data »Generate checks to verify that the value is
values in critical program locations produced by a legitimate set of instructions
» Check encoded as path optimized »Check encoded as the set of objects to
sequence of instructions which an instruction is allowed to write

»Runtime checking

»Implementation in software or
programmable hardware




Compile
Time

tware Execution Model

Source code

User
Runtime

Kernel
Runtime

User level function or device driver:

- Soft object
|:| Hard object

Seamless integration of
hardware accelerators into the
Linux software stack

Compiler supported deep
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components
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Model-Driven Trust Management

P rving system health using adaptive recovery
... when the precise cause of failure is unknown
Monitoring in one layer, fault in another

Poor localization, false positives and negatives

when several recovery options are available
Restart or fail-over of component, host, entire system

Get more diagnostic information
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Validation Framework

n integral part of the Trusted ILLIAC
Quantitative assessment of alternative designs and system solutions

Provides tools for
= Analytical models (e.g., MOBIUS)
= Simulation (e.g., RINSE)
= Experimental validation (e.g., NFTAPE)
= Fault/error injection
= Attack generation
= Run-time monitoring and Diagnosis
= Measurement and Benchmarking
Crucial in making design decisions, which require understanding

tradeoffs such as cost (in terms of complexity and overhead) versus
efficiency of proposed mechanisms.



Application-Aware Checking: An Example

Proc r, framework, and
modules part on the same
core.
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| Application-aware error detectors

= Provide application-specific error detection at low-cost for
high-performance platforms
= Limit error propagation and reduce error detection latency

= Automatically derive fine-grained detectors to
= Maximize error detection coverage
= Minimize performance impact

= Implement in software / hardware



Approach

: Placement
Determine where (program
location and variable) to place
detectors for best coverage
Dynamic Static
Analysis § Analysis

Instrument application to Perform backward slicing
observe values at § Reliability on application code from
detector points and form pg & the detector points to form
assertions based on Security a minimum symbolic
these values § expression

Check assertions using a
combination of software and
hardware

Runtime



| Where to Place the Detectors?

Choose variable to check and location to place the
detector

Starting Point: construct Dynamic Dependence Graph of
the program

Compute metrics to choose candidate points for detector
placement

= e.g., fanout, lifetime

Evaluate detectors placed according to different metrics
= Fault-injections into data



Coverage for Multiple Detectors
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Crash Coverage Vs Number of Detectors (gcc95)
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gcc95 benchmark

m Coverage for crashes:
= 80% with 10 detectors,
97 % with 100 detectors
m Coverage for fail-silence
violations (silent-data
corruptions)
= 60% with 10 detectors,
80 % with 100 detectors
= Benign errors detected
= 4 % with 10 detectors,
10 % with 100 detectors
m Placing detectors randomly on
hot-paths:

= Need ~100 ideal detectors to
achieve 90% coverage



Reliability Checks

oal: Automatically derive runtime error detectors based on application
properties and implement them in hardware/software

Approach:
= Placement of error detectors for maximum coverage and to minimize error
propagation
= Dynamic learning approach to derive detectors for the critical
variables/locations
s Static program slicing techniques to form checking expressions for critical
variables/locations
Faults addressed

= Hardware errors: computation errors, cache/memory errors, instruction
fetch/devode errors, some control flow errors

= Software errors: Uninitialized values, memory corruption errors, timing
errors that impact values, Some semantic errors in program

Implement checking expression in hardware as part of RSE



Example 1: C Code (matrix mult.)

void rInnerproduct(float *result, float a[rowsize+1][rowsize+1], float b[rowsize+1][rowsize+1], int row, int column) {
/* computes the inner product of A[row,*] and B[*,column] */
int i;
*result = 0.0;
for (i = 1; i<=rowsize; i++)
*result = *result+a[row][i]*b[i][column];

¥

void Mm (int run) {
inti, j;
Initrand();
rinitmatrix (rma);
rinitmatrix (rmb);
for (i=1;1<=rowsize; i++)
for (j = 1; ) <=rowsize; j++)
rinnerproduct(&rmrl[i][j],rma,rmb,i,j);



Example 2: Intermediate Code

void rInnerproduct(double* result, double* a, double* b, int row, int column) {
loopentry:

br tmp.2, label no_exit, label loopexit
no_exit:

tmp.7 = load a_addr

tmp.8 = load row_addr

tmp.9 = getelementptr tmp.7, tmp.8
tmp.10 = load int* %i

tmp.11 = getelementptr tmp.9, 0, tmp.10
tmp.12 = load tmp.11

tmp.13 = load b_addr

tmp.14 = load i

tmp.15 = getelementptr tmp.13, tmp.14
tmp.16 = load column_addr

tmp.17 = getelementptr tmp.15, 0, tmp.16
tmp.18 = load tmp.17

tmp.19 = mul tmp.12, tmp.18

tmp.20 = add tmp.6, tmp.19

store tmp.20, [ tmp.4 ]

br label loopentry



Example 3: Transformed Code

dd tmp.6, tmp.19

path2-8:
new.2.tmp.19 = mul tmp.12, tmp.18
new.2.tmp.20 = add 0.000000e+00, new.2.tmp.19
br label Check-8

path3-8:
new.3.tmp.19 = mul tmp.12, tmp.18
new.3.tmp.20 = add tmp.20.copy, new.3.tmp.19
br label Check-8

path4-8:
new.4.tmp.19 = mul tmp.12, tmp.18
new.4.tmp.20 = add tmp.12.copy, new.4.tmp.19
br label Check-8



| Results: Crash Pre-emption

Performance overheads with 5 critical variables per function
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Crash Pre-emption with 5 critical Average Performance Overhead
variables per function »Checking Overhead = 25%
»Modification Overhead = 8%

»Total Overhead =33 %
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“ Undetected »Before Propagation = 64 %
»Before Crash = 13%
»Total Coverage =77 %




Static Analysis for Security

¥ . Prevent access to critical Data; Memory
corruption attacks
o IS to preemptively protect "security-critical data"

regardless of vulnerability
= Can be accomplished by enforcing the source-code semantics on the
program binary
¥ . Encode the entire sequence of dependencies for

the critical location, and check that the sequence is not
violated during runtime.

= Static Analysis is performed by the IMPACT compiler

= Runtime Checking is performed as an RSE module



Information-Flow Signhatures
se detection of program data-flow violations as an
Indicator of malicious tampering with the system

= prevent an attacker to exploit disconnect between source-level
semantics and execution semantics of the program

m Security critical variables chosen based on app semantics
= Employ a compile-time static program analysis to

= extract a backward slice which collates all dependent instructions
along each control-path

= form a signature, which encodes dependences as a set (or
sequence) of instruction PCs along each control-path

= Compute runtime signatures for each critical variable
= [rusted bit associated with each instruction
= only trusted instructions can update runtime signatures
= check signatures for instructions with trusted-bit set



Security Checking 1: How do signatures
detect attacks ?

ain()

{

char password[8] = "asecret";

char userpass|8]; . i

printf(“Enter Password:\n"): Attacker enters “attack! attack!

gets(userpass);

if(strncmp(userpass,passworﬁT)——O)
printf("Success\n");

10 else

11  printf("Failed\n");

12 }

.-
2
3
4
5
6
8
9

User enters “password”

Critical Variable: char password[8]; Signature: {3}



the entire dependency tree?

| Security Checking 2: Why do we need to encode

1 int authenticate(char* username, char* password)

2 {
3 int authenticated=0; :
int result: ﬁﬂ%?ﬁél’(%rr %%F\%ﬁﬁ'ﬁé’fﬁﬂﬁ%ﬁ?ﬁated
’ _ Bsulidrstiagast & ing that it can
char tmpbuf[532; ) - be used to influencgé
6 result = Istrncmp(“asecret”,password,7); authenticated
7 snprintf(tmpbuf,sizeof(tmpbuf),”user: %s”,user);

8 tmpbuf[sizeof(tmpbuf)-1] = \0’;
9~syslog(LOG_NOTICE,tmpbuf);
10 authenticated |= result;

Critical Variable: char authenticated; Signature: {10,6},{3}

Critical Variable: char authenticated; Signature: {10},{3}



SSH Authentication Function

sys_auth_passwd(Authctxt *authctxt, const char *password) {

struct passwd *pw = authctxt->pw;

char *encrypted password;

' word-if-authctxt is invalid */

char *pw_password = authctxt->valid ? shadow_pw(pw) :
pw->pw_passwd; /*Critical Variable Definition*/

/* Check for users with no password. */

3: If (strcmp(pw_password, ") == 0 && strcmp(password, ") == 0)
return (1);
/* Encrypt the candidate password using the proper salt. */
4: encrypted password = xcrypt(password,

(pw_password[0] && pw_password[1]) ? pw_password : "xx");
/* Authentication is accepted if the encrypted passwords match */
return (strcmp(encrypted_password, pw_password) == 0);

a1

Critical Variable: pw_password



Security Checking:
How Do Signatures Detect Attacks ?

int main()
{ Attacker overwrites

“password”
char password[8] = "a_secret"; g

char userpass[8]; ‘\

User enters “password”
D

gets(userpass);
If(strncmp(userpass,password,7)==0)

1

2

3

4

5 printf(*Enter Password:\n");
6

8

9 printf("Success\n");

10 else
11 printf("Failed\n");
12 }

Critical Variable: char password[8];
Signhature: {3}



Security Checking: Why Do we Need to Encode Entire
Dependency Tree?

1 int authenticate(char* username, char* password)

- { Attacker overwrites authenticated via
int authenticated=0; the format string attack

char tmpbuf[512];
However;-smarter attacker can

result = strncmp(“asecret”,password,7); overwrite result instead, realizing
that it eventually writes
authenticated

tmpbuf[sizeof(tmpbuf)-1] = \0’; New Signature: {10,6},{3}

syslog(LOG_NOTICE,tmpbuf); :
PR

5
6
7 snprintf(tmpbuf,sizeof(tmpbuf),”user: %s”,user)
8
9

10 authenticated |= result;

Critical Variable: char authenticated:



Trusted Microkernel
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Hardware Prototype: Reliability and
Security Engine

Halt Signal

Security Checks Reliability Checks




Trusted ILLIAC: The First Hardware

Provide applications-specific level of
reliability and security, while delivering
optimal performance

Customized levels of trust enforced via
an integrated approach involving:

- re-programmable hardware,

- compiler methods to: (i) extract security and
reliability properties and (ii) accelerate
computation

- configurable OS




wmrusted ILLIAC: The Broader Context
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Broad Research Support

National Science Foundation
= Programmable Hardware and infrastructure support

Intel: Hardware/processor-level detection and recovery techniques

= Reliability and Security Engine (RSE), a processor-level framework to deploy low-overhead
application-aware error detection and recovery mechanisms

IBM: benchmarking and enhancing reliability of operating systems

= Develop methods for assessment of operating system robustness
= Targets IBM AIX OS, Linux, Sun Solaris

Motorola: security and reliability for wireless platforms

= A testbed to explore seamless reliability issues and provide low-cost detection and recovery for
wireless devices (e.g., cell phones) and networks..

SUN
= RAS (reliability, availability and serviceability) architecture of next generation dataservers
= Processor-level error detection and recovery support

HP

= Reliable and secure enterprise computing
= Deployment and automated generation of application-aware detection and recovery techniques



Building a Security or Reliability Case
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Application Aware Checking in Hardware: Reliability

and Security Engine (RSE)

Goal: Provide application-aware checks for
reliability and security

s Approach: Reconfigurable processor-level

hardware framework — Reliability and Security
Engine
Current features

= On-core approach — processor, framework, and
modules part of the same core on a single die

= Framework and modules implemented on an FPGA

= Framework configured to: (i) embed modules
needed by application and (ii) route inputs to
modules
Available modules

= Transparent hang/crash detection for OS and
applications

= Automatic processor-level checkpoint and recovery
= Malicious attack detection and masking
Area and performance overhead of RSE
iImplementation

= Area increased by 9.4%
= Maximum clock period increased by 5.9%
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Reliability and Security Engine:
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