
Application Aware Detection:
The Trusted ILLIAC Approach

Ravi K. Iyer

(Joint work with Wen Mei Hwu, Klara

Narhrstedt, Z. Kalbarczyk, William Sanders
Coordinated Science Laboratory and

The Information Trust Institute

University of Illinois at Urbana-Champaign

http://www.csl.uiuc.edu

Crash Latency Distributions for
(Linux on Pentium P4 and PowerPC G4)

Early detection of

kernel stack overflow

on PPC major

contributor to reduced

crash latency

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

P
e

rc
e

n
ta

g
e

3k 10k 100k 1M 10M 100M 1G >1G

CPU Cycles

Latency in Stack

Pentium

PPC

Breakdown of Vulnerabilities
(Bugtraq)

Co nfiguratio n Erro r

5%

De s ign Erro r

18%

Input Va lida tio n Erro r

23%

Bo undary Conditio n

Erro r

21%

1%
Fa ilure to Handle

Exceptio na l Co nditio ns

11%

Ac ce ss Valida tio n Erro r

10%
3% 2%

Unkno wn

6%

Ac ces s Va lida tio n Erro r

Ato micity Erro r

Bo undary Co nditio n Erro r

Co nfigura tio n Erro r

De s ign Erro r

Enviro nme nt Erro r

Failure to Handle Exc eptional Co nditions

Input Validation Error

Origin Va lida tio n Erro r

Ra ce Co nditio n Erro r

Serializa tio n Erro r

Unkno wn

•Access Validation Error : an operation on an object outside its access domain.

•Atomicity Error : code terminated with data only partially modified as part of a defined operation.

•Boundary Condition Error : an overflow of a static -sized data structure: a classic buffer overflow condition.

•Configuration Error : a system utility installed with incorrect setup parameters.

•Environment Error : an interaction in a specific environment between functionally correct modules.

•Failure to Handle Exceptional Conditions : system failure to handle an exceptional condition generated by a functional module, device, or

user input.

•Input Validation Error : failure to recognize syntactically incorrect input.

•Race Condition Error : an error during a timing window between two operations.

•Serialization Error : inadequate or improper serialization of operations.

•Design Error and, Origin Validation Error : Not defined.

Bugtraq database included 5925 reports on

software related vulnerabilities

Human Machine

Interface

Heterogeneous

User and

Information

Base

Trusted Information

Management

• Data Centers: High fidelity,

reliable and secure data mining,

processing and communication

engines

• Data caching and authentication

of information

Gateway

Computing

& Network

Fabric

Gateway

Gateway

Gateway

• Multilevel/hierarchical

information abstraction

• Integrated analysis and

visualization

• automated and with

human in the loop

• Wireline and wireless users

• Multiple computing platforms

• Distributed communications

• Heterogeneous information

• Variable level of trust

Trusted ILLIAC: Application Domains

TRUSTED ILLIAC

APPLICATION AWARE RELIABLE AND SECURE COMPUTING

Goal: Application-Centric Trusted Computing

Create a large, demonstrably-trustworthy, computing platform

Application centric reliability and security

Reconfigurable; High performance

Support for

Enterprise computing with seamless extension across wireline-wireless
domains

Applications: Services, Client specified level of privacy and security

Educate a new generation of students

Underlying Research Support: NSF, HP, AMD, IBM, Intel, GSRC. Illinois,
Commerce Dept..

Application Aware Trusted Computing

Applications-specific level of reliability and security provided in a
transparent manner, while delivering optimal performance

Customized levels of trust (specified by the application)

enforced via an integrated approach involving

re-programmable hardware,

New compiler methods to extract security and reliability properties

Run time framework to enforce diversity

configurable OS and middleware

Scale from few nodes to large networked systems

Enable inclusion of ad-hoc wireless nodes

Checks

Identify critical variables and their location

within a program to place detectors for best

coverage

Construct dynamic dependence

graph of the program via profiling

Apply heuristics, e.g., fanouts

metric, to identify critical variables

Use knowledge of the application

semantics to identify security critical

variables, e.g., a password

Static program analysis
Compute backward slice of program variable

along each program path starting from the

program point at which the critical variable is

located

 Generate correctness checks for data

values in critical program locations

 Check encoded as path optimized

sequence of instructions

Generate checks to verify that the value is

produced by a legitimate set of instructions

Check encoded as the set of objects to

which an instruction is allowed to write

Reliability Security

Runtime checking

Implementation in software or

programmable hardware

Hardware/Software Execution Model

CPU
FPGA

accele-

rators

memory

devices

Linux OS

Linker/Loader

Application

DLL

O
S

 m
o

d
u

le
s

Compiler analysis/transformations

Synthesis

Soft object

Hard object
User level function or device driver:

Source code

Resource manager

Compile

Time

User

Runtime

Kernel

Runtime

Human designed

hardware

CPU
FPGA

accele-

rators

memory

devices

Linux OS

Linker/Loader

Application

DLL

O
S

 m
o

d
u

le
s

Compiler analysis/transformations

Synthesis

Soft object

Hard object
User level function or device driver:

Soft object

Hard object

Soft object

Hard object
User level function or device driver:

Source code

Resource manager

Compile

Time

User

Runtime

Kernel

Runtime

Human designed

hardware

Seamless integration of
hardware accelerators into the
Linux software stack

Compiler supported deep
program analysis and
transformations to generate
CPU code, hardware library
stubs and synthesized
components

OS resource management

Model-Driven Trust Management

Disable

Reboot

Restart Bayesian

Update

SNMP Monitor Observations

HTTP1
Monitor

HTTP2

Monitor

Host

Trajectory Tree
Computation

Diagnosis

Vector

Future

Outputs

Target system

HostA

Web1
Server

App1
Server

50%

HostB

Web2

Server
50%

C

DB
50%

50%

App2

Server

POMDP

Bounds

Model of
Faults

Actions,
Monitors,

Rewards

Compute

RA-Bound

Online

Bounds

Improvement
(sim model)

RA-Bound

Model of
Faults

Actions,
Monitors,

Rewards

Compute

RA-Bound

Offline

Bounds

Improvement
(sim model)

RA-Bound

SNMP

Manager

Measured Action

Durations

Actions

Recovery

Engine

Disable

Reboot

Restart Bayesian

Update

Bayesian

Update

SNMP Monitor Observations

HTTP1
Monitor

HTTP2

Monitor

Host

Trajectory Tree
Computation

Trajectory Tree
Computation

Diagnosis

Vector

Future

Outputs

Target system

HostA

Web1
Server

App1
Server

50%

HostB

Web2

Server
50%

C

DB
50%

50%

App2

Server

Target system

HostA

Web1
Server

App1
Server

50%

HostB

Web2

Server
50%

C

DB
50%

50%

App2

Server

POMDP

Bounds

Model of
Faults

Actions,
Monitors,

Rewards

Compute

RA-Bound

Online

Bounds

Improvement
(sim model)

RA-Bound

Model of
Faults

Actions,
Monitors,

Rewards

Compute

RA-Bound

Offline

Bounds

Improvement
(sim model)

RA-Bound

SNMP

Manager

Measured Action

Durations

Actions

Recovery

Engine

Preserving system health using adaptive recovery

… when the precise cause of failure is unknown

 Monitoring in one layer, fault in another

 Poor localization, false positives and negatives

… when several recovery options are available

 Restart or fail-over of component, host, entire system

 Get more diagnostic information

Validation Framework

An integral part of the Trusted ILLIAC
Quantitative assessment of alternative designs and system solutions
Provides tools for

Analytical models (e.g., MOBIUS)
Simulation (e.g., RINSE)
Experimental validation (e.g., NFTAPE)

Fault/error injection
Attack generation

Run-time monitoring and Diagnosis
Measurement and Benchmarking

Crucial in making design decisions, which require understanding
tradeoffs such as cost (in terms of complexity and overhead) versus
efficiency of proposed mechanisms.

Application-Aware Checking: An Example

F
ra

m
e

w
o

rk
 I

n
te

rf
a

c
e

 F
a

b
ri

c

Pipeline

Modules

Processor, framework, and
modules part on the same
core.

Reliability and Security Engine

Reconfigurable processor-level hardware
framework

Provides HW modules for reliability and security

Modules and framework interface

Application Failure Mitigation Driver

Chkpt
Reco-

very

Crash

dete-

ction

Hang

dete-

ction

...

OS Driver

OS Kernel

Kernel

Control

Console

Configuration

Interface

OS: Security Micro-Kernel

Applic-transparent OS-level
checkpointing

OS health monitoring

Trusted

middleware

Assertion-Based Checking

Automatic generation and
software/hardware
implementation of error
detectors

RSE Framework

Fetch_Out

RegFile_Data

Execute_Out

Memory_Out

Commit_Out

CommitMEMEXIDIF

Instruction

Queue

Pre -emptive

Control -flow

Checking

Process

Health

Monitor

Selective

Replication

Manager

Mem

Mem_Rdy

Reg#/

Reg Vals
ALU Result

Addr / Next PC

Data Loaded

From Memory

Commit/

Squash

Pointer

Taintedness

Tracking

F
ra

m
e

w
o

rk

In
te

rf
a

c
e

F

a
b

ri
c

Hardware

Modules

INST

Daemon

TCP Connection

Mgmt.

Named Pipe

Mgmt.

Process

Mgmt.

Detection

Policy

Microkernel

Process

Mgmt. Network

Daemon

Daemon

Remote daemons

Node 1 Node 2

Node 3

Microkernel

Recovery

Policy

Local Manager

Application
Execution

Controller

Application-aware error detectors

Provide application-specific error detection at low-cost for
high-performance platforms

Limit error propagation and reduce error detection latency

 Automatically derive fine-grained detectors to

Maximize error detection coverage

Minimize performance impact

 Implement in software / hardware

Approach

Determine where (program

location and variable) to place

detectors for best coverage

Instrument application to

observe values at

detector points and form

assertions based on

these values

Perform backward slicing

on application code from

the detector points to form

a minimum symbolic

expression

Dynamic

Analysis

Static

Analysis

Check assertions using a

combination of software and

hardware
Runtime

Reliability

&

Security

Placement

Where to Place the Detectors?

Choose variable to check and location to place the
detector

Starting Point: construct Dynamic Dependence Graph of
the program

Compute metrics to choose candidate points for detector
placement

e.g., fanout, lifetime

Evaluate detectors placed according to different metrics

 Fault-injections into data

Coverage for Multiple Detectors

gcc95 benchmark

Coverage for crashes:

80% with 10 detectors,
97 % with 100 detectors

Coverage for fail-silence
violations (silent-data
corruptions)

 60% with 10 detectors,
 80 % with 100 detectors

 Benign errors detected

 4 % with 10 detectors,
10 % with 100 detectors

Placing detectors randomly on
hot-paths:

Need ~100 ideal detectors to
achieve 90% coverage

Crash Coverage Vs Number of Detectors (gcc95)

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120

Bin Size

D
e
te

c
ti

o
n

 P
ro

b
a
b

il
it

y

Fanouts

Lifetimes

Random

Execution

Propagation

Cover

Crash Coverage Vs Number of Detectors (gcc95)

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120

Bin Size

D
e
te

c
ti

o
n

 P
ro

b
a
b

il
it

y

Fanouts

Lifetimes

Random

Execution

Propagation

Cover

Crash Coverage Vs Number of Detectors (gcc95)

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120

Bin Size

D
e
te

c
ti

o
n

 P
ro

b
a
b

il
it

y

Fanouts

Lifetimes

Random

Execution

Propagation

Cover

Crash Coverage Vs Number of Detectors (gcc95)

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120

Bin Size

D
e
te

c
ti

o
n

 P
ro

b
a
b

il
it

y

Fanouts

Lifetimes

Random

Execution

Propagation

Cover

Crash Coverage Vs Number of Detectors (gcc95)

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120

Bin Size

D
e
te

c
ti

o
n

 P
ro

b
a
b

il
it

y

Fanouts

Lifetimes

Random

Execution

Propagation

Cover

Crash Coverage Vs Number of Detectors (gcc95)

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120

Bin Size

D
e
te

c
ti

o
n

 P
ro

b
a
b

il
it

y

Fanouts

Lifetimes

Random

Execution

Propagation

Cover

Reliability Checks

Goal: Automatically derive runtime error detectors based on application
properties and implement them in hardware/software

Approach:

Placement of error detectors for maximum coverage and to minimize error
propagation

Dynamic learning approach to derive detectors for the critical
variables/locations

Static program slicing techniques to form checking expressions for critical
variables/locations

Faults addressed

Hardware errors: computation errors, cache/memory errors, instruction
fetch/devode errors, some control flow errors

Software errors: Uninitialized values, memory corruption errors, timing
errors that impact values, Some semantic errors in program

Implement checking expression in hardware as part of RSE

Example 1: C Code (matrix mult.)

void rInnerproduct(float *result, float a[rowsize+1][rowsize+1], float b[rowsize+1][rowsize+1], int row, int column) {
 /* computes the inner product of A[row,*] and B[*,column] */
 int i;
 *result = 0.0;
 for (i = 1; i<=rowsize; i++)
 *result = *result+a[row][i]*b[i][column];
}

void Mm (int run) {
 int i, j;
 Initrand();
 rInitmatrix (rma);
 rInitmatrix (rmb);
 for (i = 1; i <= rowsize; i++)
 for (j = 1; j <= rowsize; j++)
 rInnerproduct(&rmr[i][j],rma,rmb,i,j);
}

Example 2: Intermediate Code

void rInnerproduct(double* result, double* a, double* b, int row, int column) {
loopentry:

….
br tmp.2, label no_exit, label loopexit

no_exit:
 …
 tmp.7 = load a_addr
 tmp.8 = load row_addr
 tmp.9 = getelementptr tmp.7, tmp.8
 tmp.10 = load int* %i
 tmp.11 = getelementptr tmp.9, 0, tmp.10
 tmp.12 = load tmp.11
 tmp.13 = load b_addr
 tmp.14 = load i
 tmp.15 = getelementptr tmp.13, tmp.14
 tmp.16 = load column_addr
 tmp.17 = getelementptr tmp.15, 0, tmp.16
 tmp.18 = load tmp.17
 tmp.19 = mul tmp.12, tmp.18
 tmp.20 = add tmp.6, tmp.19
 store tmp.20, [tmp.4]
 ….
 br label loopentry

Example 3: Transformed Code

tmp.20 = add tmp.6, tmp.19

switch pathValue {
 case 2: label path2-8

 case 3: label path3-8
 case 4, label path4-8

}

path2-8:
new.2.tmp.19 = mul tmp.12, tmp.18
new.2.tmp.20 = add 0.000000e+00, new.2.tmp.19

 br label Check-8

path3-8:
 new.3.tmp.19 = mul tmp.12, tmp.18

 new.3.tmp.20 = add tmp.20.copy, new.3.tmp.19
 br label Check-8

path4-8:
 new.4.tmp.19 = mul tmp.12, tmp.18

 new.4.tmp.20 = add tmp.12.copy, new.4.tmp.19
 br label Check-8

Results: Crash Pre-emption

Performance overheads with 5 critical variables per function

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

IntMM RealMM Oscar Bubblesort Quicksort Treesort Perm Queens Towers Health em3d mst barnes-hut tsp Mean

Benchmark

S
lo

w
d

o
w

n

Baseline Modifications Checking

Average Performance Overhead

Checking Overhead = 25%

Modification Overhead = 8%

Total Overhead = 33 %

Average Coverage (Crashes)

Before Propagation = 64 %

Before Crash = 13%

Total Coverage = 77 %

Crash Pre-emption with 5 critical

variables per function

Before Crash

Before Prop

Undetected

Static Analysis for Security

Motivation: Prevent access to critical Data; Memory
corruption attacks

Goal is to preemptively protect "security-critical data"
regardless of vulnerability

Can be accomplished by enforcing the source-code semantics on the
program binary

Approach: Encode the entire sequence of dependencies for
the critical location, and check that the sequence is not
violated during runtime.

Static Analysis is performed by the IMPACT compiler

Runtime Checking is performed as an RSE module

Use detection of program data-flow violations as an
indicator of malicious tampering with the system

prevent an attacker to exploit disconnect between source-level
semantics and execution semantics of the program

Security critical variables chosen based on app semantics

Employ a compile-time static program analysis to

extract a backward slice which collates all dependent instructions
along each control-path

form a signature, which encodes dependences as a set (or
sequence) of instruction PCs along each control-path

Compute runtime signatures for each critical variable

trusted bit associated with each instruction

only trusted instructions can update runtime signatures

check signatures for instructions with trusted-bit set

Information-Flow Signatures

1 int main()
2 {
3 char password[8] = "asecret";
4 char userpass[8];
5 printf(“Enter Password:\n”);
6 gets(userpass);
8 if(strncmp(userpass,password,7)==0)
9 printf("Success\n");
10 else
11 printf("Failed\n");
12 }

Security Checking 1: How do signatures
detect attacks ?

User enters “password”

Critical Variable: char password[8]; Signature: {3}

Attacker enters “attack! attack!”

1 int authenticate(char* username, char* password)

2 {

3 int authenticated=0;

4 int result;

5 char tmpbuf[512];

6 result = !strncmp(“asecret”,password,7);

7 snprintf(tmpbuf,sizeof(tmpbuf),”user: %s”,user);

8 tmpbuf[sizeof(tmpbuf)-1] = ‘\0’;

9 syslog(LOG_NOTICE,tmpbuf);

10 authenticated |= result;

Security Checking 2: Why do we need to encode
the entire dependency tree?

Critical Variable: char authenticated; Signature: {10},{3}

Attacker overwrites authenticated

via the format string

Smarter attacker overwrites

result instead, realizing that it can

be used to influence

 authenticated

Critical Variable: char authenticated; Signature: {10,6},{3}

SSH Authentication Function

int sys_auth_passwd(Authctxt *authctxt, const char *password) {

1: struct passwd *pw = authctxt->pw;

char *encrypted_password;

/* Just use the supplied fake password if authctxt is invalid */

2: char *pw_password = authctxt->valid ? shadow_pw(pw) :

 pw->pw_passwd; /*Critical Variable Definition*/

/* Check for users with no password. */

3: if (strcmp(pw_password, "") == 0 && strcmp(password, "") == 0)

return (1);

/* Encrypt the candidate password using the proper salt. */

4: encrypted_password = xcrypt(password,

 (pw_password[0] && pw_password[1]) ? pw_password : "xx");

/* Authentication is accepted if the encrypted passwords match */

5: return (strcmp(encrypted_password, pw_password) == 0);

}

Critical Variable: pw_password

1 int main()

2 {

3 char password[8] = "a_secret";

4 char userpass[8];

5 printf(“Enter Password:\n”);

6 gets(userpass);

8 if(strncmp(userpass,password,7)==0)

9 printf("Success\n");

10 else

11 printf("Failed\n");

12 }

Security Checking:
How Do Signatures Detect Attacks ?

Critical Variable: char password[8];

Signature: {3}

Attacker overwrites

“password”

User enters “password”

1 int authenticate(char* username, char* password)

2 {

3 int authenticated=0;

4 int result;

5 char tmpbuf[512];

6 result = strncmp(“asecret”,password,7);

7 snprintf(tmpbuf,sizeof(tmpbuf),”user: %s”,user);

8 tmpbuf[sizeof(tmpbuf)-1] = ‘\0’;

9 syslog(LOG_NOTICE,tmpbuf);

10 authenticated |= result;

Security Checking: Why Do we Need to Encode Entire
Dependency Tree?

Critical Variable: char authenticated;

Attacker overwrites authenticated via

the format string attack

Signature: {10},{3}

However, smarter attacker can

overwrite result instead, realizing

that it eventually writes

authenticated

New Signature: {10,6},{3}

Trusted Microkernel

OS

Pin Manager

P_PMC P_INTR P_SIG P_SCHL

HW

Dispatcher

Module Mgr

Sys Hang

Detection

eventoperation req.

RMK Comm.

Channel

event

operation

req.

RMK modules

App. Hang

Detection

App. Crash

Detection

Trans. App.

Chkpt

… …

RMK pins

eventoperation req.

RMK core

event /

operation request

management

configuration

configuration

Hardware Prototype: Reliability and
Security Engine

Pointer

Taintedness

 Main Processor Instruction Pipeline

RSE – Reliability and Security Engine

DecodeExecute Memory Commit

PC Operands

Security Checks Reliability Checks

Halt Signal

Data-flow Signature Checking

Pointer Taintedness Checking

Result Data

Signature

Accumulator

Data Value Checking

Critical

Variable

Signatures

Critical Variable

Re-Computation

Path

Tracking

 Process

Health

Monitor

Fetch

Taintedness

Tracking

Taintedness

Detection

 Control-

Flow

Checking

Trusted ILLIAC: The First Hardware
Provide applications-specific level of

reliability and security, while delivering

optimal performance

Customized levels of trust enforced via

an integrated approach involving:

 - re-programmable hardware,

 - compiler methods to: (i) extract security and

 reliability properties and (ii) accelerate

 computation

 - configurable OS

Trusted ILLIAC: The Broader Context

New experience in system building: reliable and
secure processing architectures, smart compilers
combined with configurable OS and hardware
Pushing the boundaries in
customizable trusted
computing technologies

Enable university, industry,
and government collaboration

Train the next generation
of system designers and professionals

Trusted

Illiac

Gateway

Gateway

Gateway

Example Trusted

ILLIAC Node

F
ra

m
e

w
o

rk
 I

n
te

rf
a

c
e

 F
a

b
ri

c

Pipeline

Modules

Application Failure Mitigation Driver

Chkpt
Reco-

very

Crash

dete-

ction

Hang

dete-

ction

...

OS Driver

OS Kernel

Kernel

Control

Console

Configuration

Interface

RSE Framework

Fetch_Out

RegFile_Data

Execute_Out

Memory_Out

Commit_Out

CommitMEMEXIDIF

Instruction

Queue

Pre-emptive

Control-flow

Checking

Process

Health

Monitor

Selective

Replication

Manager

Mem

Mem_Rdy

Reg#/

Reg Vals
ALU Result

Addr / Next PC

Data Loaded

From Memory

Commit/

Squash

Pointer

Taintedness

Tracking

F
ra

m
e
w

o
rk

In
te

rf
a

c
e

 F
a

b
ri

c

Hardware

Modules

INST

RSE Framework

Fetch_Out

RegFile_Data

Execute_Out

Memory_Out

Commit_Out

CommitMEMEXIDIF

Instruction

Queue

Pre-emptive

Control-flow

Checking

Process

Health

Monitor

Selective

Replication

Manager

Mem

Mem_Rdy

Reg#/

Reg Vals
ALU Result

Addr / Next PC

Data Loaded

From Memory

Commit/

Squash

Pointer

Taintedness

Tracking

F
ra

m
e
w

o
rk

In
te

rf
a

c
e

 F
a

b
ri

c

Hardware

Modules

INST

Daemon

TCP Connection

Mgmt.

Named Pipe

Mgmt.

Process

Mgmt.

Detection

Policy

Microkernel

Process

Mgmt. Network

Daemon

Daemon

Remote daemons

Node 1 Node 2

Node 3

Microkernel

Recovery

Policy

Local Manager

Application
Execution

Controller

CPU
FPGA

accele-

rators

memory

devices

Linux OS

Linker/Loader

Application

DLL
O

S
 m

o
d

u
le

s

Compiler analysis/transformations

Synthesis

Soft object

Hard object
User level function or device driver:

Source code

Resource manager

Compile

Time

User

Runtime

Kernel

Runtime

Human designed

hardware

CPU
FPGA

accele-

rators

memory

devices

Linux OS

Linker/Loader

Application

DLL
O

S
 m

o
d

u
le

s

Compiler analysis/transformations

Synthesis

Soft object

Hard object
User level function or device driver:

Soft object

Hard object

Soft object

Hard object
User level function or device driver:

Source code

Resource manager

Compile

Time

User

Runtime

Kernel

Runtime

Human designed

hardware

Broad Research Support

National Science Foundation

Programmable Hardware and infrastructure support

Intel: Hardware/processor-level detection and recovery techniques

Reliability and Security Engine (RSE), a processor-level framework to deploy low-overhead
application-aware error detection and recovery mechanisms

IBM: benchmarking and enhancing reliability of operating systems

Develop methods for assessment of operating system robustness

Targets IBM AIX OS, Linux, Sun Solaris

Motorola: security and reliability for wireless platforms

A testbed to explore seamless reliability issues and provide low-cost detection and recovery for
wireless devices (e.g., cell phones) and networks..

SUN

RAS (reliability, availability and serviceability) architecture of next generation dataservers

Processor-level error detection and recovery support

HP

Reliable and secure enterprise computing

Deployment and automated generation of application-aware detection and recovery techniques

PIP requirements 1 – 4

JBI survivability

requirements

Initialized JBI provides

essential services

Authorized publish is

processed successfully

Confidentiality
Dataflow

Timeliness

Integrity

(from functional

model execution)

Component Model

Assumptions Hold

JBI intrusion detection

requirements

PA1: Client-

Core

Communication

I & C

PA2: Alternate

Path

Availability

QA1: QIS

Incorruptibility

QA2: QIS

Communication

Cutoff

QA3: QIS

Input

Integrity

QA4: QIS

Function

Correctness

AA1: AP

Function

Correctness

AA2: AP

Application-

layer Integrity

AA3: AP

Application-layer

Confidentiality

DA1: DC

Communications

SA1: IO

Integrity in

PSQ Server

SA2: Client

Confidentiality

in PSQ Server

SA3: IO

Authenticity

SA4: Network-

layer I & C

SeA1: Sensor

False Alarm

Rate

SeA2: Sensor

Detection Delay

SeA3: Sensor

Detection

Probability

CoA1:

Corrleator

False Alarm

Rate

MA1: SM Byzantine

Agreement

PsA1: ADF

Policy Server

Input

Correctness

PsA2: ADF

Policy Server

SynchronizationSystem Connectivity

Physical Topology

Network TopologyRestricted RoutingNo Tunneling Attacks

SELinux Solaris Windows

Type Enforcement Hardened Kernel IKENA StormWatch

Platform Mechanisms Process Domain

Policies

Private Key

Confidentiality

No Unauthorized

Direct Access

Keys Protected

from Theft

DoD Common

Access Card (CAC)

PKCS #11 Tamperproof

Keys Not Guessable

Algorithmic

Framework

Key Length Key Lifetime

No Unauthorized

Indirect Access

Physical Protection

of CAC device

Protection of CAC

Authentication Data

No Compromise of

Authorized Process

Accessing CAC

No Cryptography

in Access Proxy

Not

Preconfigured

Not

Reconfigurable

ADF NIC

services

protected

ADF Correctness

ADF NIC Physical

Security

ADF NIC Firmware

Initialization

ADF Key Initialization

ADF Agent

Initialization

ADF Protocol

Correctness

ADF Host

Independence

ADF Agent

Correctness

VPG Integrity VPG

Confidentiality

Policy Server

Integrity

ADF Policy

Correctness

Correctness of

Registration

Protocol

Correctness of

Reattachment

Protocol

Hard-wired

Configuration

Electrically

Isolated

Physically

Protected

Connectivity

Physical

Integrity

Electrical

Integrity

Gate

Configuration and

Truth Table

Proxy Protocol

Configuration

Can Identify

Malformed Traffic

Correctness of

Rate Control

Mechanisms

Correctness of

Certificate

Exchange

IDS Experimental

Evaluation

Correctness of Modified

ITUA Protocols

Functional model

faithful to design

IDS / Correlation

requirements

IO Confidentiality

(end-to-end)

IConfidentiality of

Network

Communications

Confidential info is

not exposed

Unauthorized activity

is properly rejected

Authorized join/leave

is processed

successfully

Authorized query is

processed

successfully

Authorized subscribe is

processed successfully

JBI is properly

initialized

Design Team Review

Attack Model

Assumptions Hold

Functional Model

Assumptions Hold

Infrastructure

Attack

Propagation

Data Attack

Propagation

Attacks

Originate

Outside the

Platform

No Data

Attacks

Outside the

Platform

Initial Targets

of

Infrastructure

Attacks

Isolation of

Intruded

Process

Domains

Targets for

Loss of IO

Confidentiality

No

Compromise

or Failure of

QIS

DoS Causes

Processing

Delays

DoS Does

Not Corrupt

Other

Components

DoS Attacks

Do Not

Propagate from

Clients to Core

Design

Faithfully

Implemented

Absence of

Insider Threat

Attack Model

Parameter

Selection

CERT

Vulnerability

DB Analysis

Variation over

Anticipated

Ranges

Correctness of

Managed Switch

IO Confidentiality

in Transit

IO Confidentiality

in Storage

Confidentiality of

Application-layer

Messages

PIP requirements 1 – 4

JBI survivability

requirements

Initialized JBI provides

essential services

Authorized publish is

processed successfully

Confidentiality
Dataflow

Timeliness

Integrity

(from functional

model execution)

Component Model

Assumptions Hold

JBI intrusion detection

requirements

PA1: Client-

Core

Communication

I & C

PA2: Alternate

Path

Availability

QA1: QIS

Incorruptibility

QA2: QIS

Communication

Cutoff

QA3: QIS

Input

Integrity

QA4: QIS

Function

Correctness

AA1: AP

Function

Correctness

AA2: AP

Application-

layer Integrity

AA3: AP

Application-layer

Confidentiality

DA1: DC

Communications

SA1: IO

Integrity in

PSQ Server

SA2: Client

Confidentiality

in PSQ Server

SA3: IO

Authenticity

SA4: Network-

layer I & C

SeA1: Sensor

False Alarm

Rate

SeA2: Sensor

Detection Delay

SeA3: Sensor

Detection

Probability

CoA1:

Corrleator

False Alarm

Rate

MA1: SM Byzantine

Agreement

PsA1: ADF

Policy Server

Input

Correctness

PsA2: ADF

Policy Server

SynchronizationSystem Connectivity

Physical Topology

Network TopologyRestricted RoutingNo Tunneling Attacks

SELinux Solaris Windows

Type Enforcement Hardened Kernel IKENA StormWatch

Platform Mechanisms Process Domain

Policies

Private Key

Confidentiality

No Unauthorized

Direct Access

Keys Protected

from Theft

DoD Common

Access Card (CAC)

PKCS #11 Tamperproof

Keys Not Guessable

Algorithmic

Framework

Key Length Key Lifetime

No Unauthorized

Indirect Access

Physical Protection

of CAC device

Protection of CAC

Authentication Data

No Compromise of

Authorized Process

Accessing CAC

No Cryptography

in Access Proxy

Not

Preconfigured

Not

Reconfigurable

ADF NIC

services

protected

ADF Correctness

ADF NIC Physical

Security

ADF NIC Firmware

Initialization

ADF Key Initialization

ADF Agent

Initialization

ADF Protocol

Correctness

ADF Host

Independence

ADF Agent

Correctness

VPG Integrity VPG

Confidentiality

Policy Server

Integrity

ADF Policy

Correctness

Correctness of

Registration

Protocol

Correctness of

Reattachment

Protocol

Hard-wired

Configuration

Electrically

Isolated

Physically

Protected

Connectivity

Physical

Integrity

Electrical

Integrity

Gate

Configuration and

Truth Table

Proxy Protocol

Configuration

Can Identify

Malformed Traffic

Correctness of

Rate Control

Mechanisms

Correctness of

Certificate

Exchange

IDS Experimental

Evaluation

Correctness of Modified

ITUA Protocols

Functional model

faithful to design

IDS / Correlation

requirements

IDS / Correlation

requirements

IO Confidentiality

(end-to-end)

IConfidentiality of

Network

Communications

Confidential info is

not exposed

Confidential info is

not exposed

Unauthorized activity

is properly rejected

Unauthorized activity

is properly rejected

Authorized join/leave

is processed

successfully

Authorized join/leave

is processed

successfully

Authorized query is

processed

successfully

Authorized query is

processed

successfully

Authorized subscribe is

processed successfully

Authorized subscribe is

processed successfully

JBI is properly

initialized

JBI is properly

initialized

Design Team Review

Attack Model

Assumptions Hold

Functional Model

Assumptions Hold

Infrastructure

Attack

Propagation

Data Attack

Propagation

Attacks

Originate

Outside the

Platform

No Data

Attacks

Outside the

Platform

Initial Targets

of

Infrastructure

Attacks

Isolation of

Intruded

Process

Domains

Targets for

Loss of IO

Confidentiality

No

Compromise

or Failure of

QIS

DoS Causes

Processing

Delays

DoS Does

Not Corrupt

Other

Components

DoS Attacks

Do Not

Propagate from

Clients to Core

Design

Faithfully

Implemented

Absence of

Insider Threat

Attack Model

Parameter

Selection

CERT

Vulnerability

DB Analysis

Variation over

Anticipated

Ranges

Correctness of

Managed Switch

IO Confidentiality

in Transit

IO Confidentiality

in Storage

IO Confidentiality

in Storage

Confidentiality of

Application-layer

Messages

Confidentiality of

Application-layer

Messages

An overall Reliability & Security Case
for the use of Trusted ILLIAC for
a particular critical application is

made by combining multiple
forms of evidence into an

argument graph.

Evidence can take the form of:

Stochastic Models (Mobius)

Formal Arguments (Model checking,
theorem proving)

Informal Arguments

Experimental Results

Building a Security or Reliability Case

Application Aware Checking in Hardware: Reliability
and Security Engine (RSE)

Goal: Provide application-aware checks for
 reliability and security

Approach: Reconfigurable processor-level
hardware framework – Reliability and Security
Engine
Current features

On-core approach – processor, framework, and
modules part of the same core on a single die
Framework and modules implemented on an FPGA
Framework configured to: (i) embed modules
needed by application and (ii) route inputs to
modules

Available modules
Transparent hang/crash detection for OS and
applications
Automatic processor-level checkpoint and recovery
Malicious attack detection and masking

Area and performance overhead of RSE
implementation

Area increased by 9.4%
Maximum clock period increased by 5.9%

On-core approach

F
ra

m
e

w
o

rk
 I

n
te

rf
a

c
e

 F
a

b
ri
c

Pipeline

Modules

Reliability and Security Engine:
Implementation

Instruction-

Cache
Instruction-Fetch

Branch

Predictor

Instruction-Address

Translation Buffer

4-entry

Fetch Buffer

Dispatcher

Instruction

Decoder

Register

File

Load / Store

Unit

Integer

Unit

Multiply /

Divide Unit

Branch

Resolve Unit

Reorder

Buffer

Write-

Buffer

Data-

Cache

Commit-UnitData-Address

Translation Buffer
Arbiter

Instruction-

Cache
Instruction-Fetch

Branch

Predictor

Instruction-Address

Translation Buffer

4-entry

Fetch Buffer

Dispatcher

Instruction

Decoder

Dispatcher

Instruction

Decoder

Register

File

Load / Store

Unit

Integer

Unit

Multiply /

Divide Unit

Branch

Resolve Unit

Reorder

Buffer

Write-

Buffer

Data-

Cache

Commit-UnitData-Address

Translation Buffer
Arbiter

ROBAllocPtr1 (i)

ROBAllocPtr2 (i)

InstrReg1

InstrReg2

M
U

X3

MDUDataOut

ALUDataOut

LSUEffAddr

LoadFromALU (i)
LoadFromMDU (i)

LoadFromLSU (i)

LSUDataOut

LoadFromLSU (i)

M

U
X5

LSUSrc2

ALUSrc2

MDUSrc2

IssueLSU (i)

IssueALU (i)
IssueMDU (i)

M
U

X2

Instruction

Checker

Module

Memory

Layout
Randomization

Data

Dependency
Tracker

Memory

Access
Unit

Instruction

Output

Queue

Memory Access Request Mem_Rdy

Memory
Access

Request

Memory

Data

Module
Outputs

RSE Framework

CUCommitInstr1

InstrToCommit (i)

M

U
X4

CUCommitInstr2

Mem

Adaptive

Heartbeat
Monitor

RegFile_Data

Entry i

Execute_Out

Entry i

Fetch_Out

Entry i

Memory_Out
Entry i

Commit_Out

Entry i

Module

Enable/

Disable

InstrReg3

InstrReg4

ROBAllocPtr3 (i)

ROBAllocPtr4 (i)

M

U
X1 Hardware Modules

Input interface

Fetch / Dispatch Width 4 instructions

Issue width 4 instructions

RUU / LSQ size 16/8 entries

Instruction L1 cache Size: 8 KB, 1-way associative

Data L1 cache Size: 8 KB, 1-way associative

Instruction L2 cache Size: 64 KB, 2-way associative

Data L2 Cache Size: 128 KB, 2-way associative

check
checkValid

Bus-Interface

Unit

External

Bus

Input Interface:

 Queue Size = 16

 32-bit regs = 80;

 Gate Count = 12K

