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Crash Latency Distributions for
(Linux on Pentium P4 and PowerPC G4)
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Breakdown of Vulnerabilities
(Bugtraq)

Co nfiguratio n Erro r

5%

De s ign Erro r

18%

Input Va lida tio n Erro r

23%

Bo undary Conditio n 

Erro r

21%

1%
Fa ilure to Handle 

Exceptio na l Co nditio ns

11%

Ac ce ss  Valida tio n Erro r

10%
3% 2%

Unkno wn

6%

Ac ces s  Va lida tio n Erro r

Ato micity Erro r

Bo undary Co nditio n Erro r

Co nfigura tio n Erro r

De s ign Erro r

Enviro nme nt Erro r

Failure to  Handle  Exc eptional Co nditions

Input Validation Error

Origin Va lida tio n Erro r

Ra ce Co nditio n Erro r

Serializa tio n Erro r

Unkno wn

•Access Validation Error : an operation on an object outside its access domain.

•Atomicity Error : code terminated with data only partially modified as part of a defined operation.

•Boundary Condition Error : an overflow of a static -sized data structure: a classic buffer overflow condition.

•Configuration Error : a system utility installed with incorrect setup parameters.

•Environment Error : an interaction in a specific environment between functionally correct modules. 

•Failure to Handle Exceptional Conditions : system failure to handle an exceptional condition generated by a functional module, device, or 

user input. 

•Input Validation Error : failure to recognize syntactically incorrect input.

•Race Condition Error : an error during a timing window between two operations.

•Serialization Error : inadequate or improper serialization of operations.

•Design Error and, Origin Validation Error : Not defined.  

Bugtraq database included 5925 reports on

software related vulnerabilities



Human Machine

Interface

Heterogeneous

User and

Information

Base

Trusted Information

Management

• Data Centers:  High fidelity,

reliable and secure data mining,

processing and communication

engines

• Data caching and authentication

of information

Gateway

Computing 

& Network

Fabric

Gateway

Gateway

Gateway

• Multilevel/hierarchical

information abstraction

• Integrated analysis and

visualization

• automated and with

human in the loop

• Wireline and wireless users

• Multiple computing platforms

• Distributed communications

• Heterogeneous  information

• Variable level of trust

Trusted ILLIAC: Application Domains



TRUSTED ILLIAC

APPLICATION AWARE RELIABLE AND SECURE COMPUTING



Goal: Application-Centric Trusted Computing

Create a large, demonstrably-trustworthy, computing platform

Application centric reliability and security

Reconfigurable; High performance

Support for

Enterprise computing with seamless extension across wireline-wireless
domains

Applications: Services, Client specified level of privacy and security

Educate a new generation of students

Underlying Research Support: NSF, HP, AMD, IBM, Intel, GSRC. Illinois,
Commerce Dept..



Application Aware Trusted Computing

Applications-specific level of reliability and security provided in a
transparent manner, while delivering optimal performance

Customized levels of trust (specified by the application)

enforced via an integrated approach involving

re-programmable hardware,

New compiler methods to extract security and reliability properties

Run time framework to enforce diversity

configurable OS and middleware

Scale from few nodes to large networked systems

Enable inclusion of ad-hoc wireless nodes



Checks

Identify critical variables and their location

within a program to place detectors for best

coverage

Construct dynamic dependence

graph of the program via profiling

Apply heuristics, e.g., fanouts

metric, to identify critical variables

Use knowledge of the application

semantics to identify security critical

variables, e.g., a password

Static program analysis
Compute backward slice of program variable

along each program path starting from the

program point at which the critical variable is

located

 Generate correctness checks for data

values in critical program locations

 Check encoded as path optimized

sequence of instructions

Generate checks to verify that the value is

produced by a legitimate set of instructions

Check encoded as the set of objects to

which an instruction is allowed to write

Reliability Security

Runtime checking

Implementation in software or

programmable hardware
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Model-Driven Trust Management
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… when the precise cause of failure is unknown

 Monitoring in one layer, fault in another

 Poor localization, false positives and negatives

…  when several recovery options are available 

 Restart or fail-over of component, host, entire system

 Get more diagnostic information



Validation Framework

An integral part of the Trusted ILLIAC
Quantitative assessment of alternative designs and system solutions
Provides  tools for

Analytical models (e.g., MOBIUS)
Simulation (e.g., RINSE)
Experimental validation (e.g., NFTAPE)

Fault/error injection
Attack generation

Run-time monitoring and Diagnosis
Measurement and Benchmarking

Crucial in making design decisions, which require understanding
tradeoffs such as cost (in terms of complexity and overhead) versus
efficiency of proposed mechanisms.



Application-Aware Checking: An Example
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Application-aware error detectors

Provide application-specific error detection at low-cost for
high-performance platforms

Limit error propagation and reduce error detection latency

 Automatically derive fine-grained detectors to

Maximize error detection coverage

Minimize performance impact

 Implement in software / hardware



Approach

Determine where (program

location and variable) to place

detectors for best coverage

Instrument application to

observe values at

detector points and form

assertions based on

these values

Perform backward slicing

on application code from

the detector points to form

a minimum symbolic

expression

Dynamic

Analysis

Static

Analysis

Check assertions using a

combination of software and

hardware
Runtime

Reliability

&

Security

Placement



Where to Place the Detectors?

Choose variable to check and location to place the
detector

Starting  Point: construct Dynamic Dependence Graph of
the program

Compute metrics  to choose candidate points for detector
placement

e.g., fanout, lifetime

Evaluate detectors placed according to different metrics

 Fault-injections into data



Coverage for Multiple Detectors

gcc95 benchmark

Coverage for crashes:

80% with 10 detectors,
97 % with 100 detectors

Coverage for fail-silence
violations (silent-data
corruptions)

 60% with 10 detectors,
 80 % with 100 detectors

 Benign errors detected

 4 % with 10 detectors,
10 % with 100 detectors

Placing detectors randomly on
hot-paths:

Need ~100 ideal detectors to
achieve 90% coverage

Crash Coverage Vs Number of Detectors (gcc95)
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Reliability Checks

Goal: Automatically derive runtime error detectors based on application
properties and implement them in hardware/software

Approach:

Placement of error detectors for maximum coverage and to minimize error
propagation

Dynamic learning approach to derive detectors for the critical
variables/locations

Static program slicing techniques to form checking expressions for critical
variables/locations

Faults addressed

Hardware errors: computation errors, cache/memory errors, instruction
fetch/devode errors, some control flow errors

Software errors: Uninitialized values, memory corruption errors, timing
errors that impact values, Some semantic errors in program

Implement checking expression in hardware as part of RSE



Example 1: C Code (matrix mult.)

void rInnerproduct(float *result, float a[rowsize+1][rowsize+1], float b[rowsize+1][rowsize+1], int row, int column) {
        /* computes the inner product of A[row,*] and B[*,column] */
        int i;
        *result = 0.0;
        for (i = 1; i<=rowsize; i++)
                    *result = *result+a[row][i]*b[i][column];
}

void Mm (int run)    {
    int i, j;
    Initrand();
    rInitmatrix (rma);
    rInitmatrix (rmb);
    for ( i = 1; i <= rowsize; i++ )
                for ( j = 1; j <= rowsize; j++ )
                        rInnerproduct(&rmr[i][j],rma,rmb,i,j);
}



Example 2: Intermediate Code

void rInnerproduct(double* result, double* a, double* b, int row, int column) {
loopentry:

….
br  tmp.2, label no_exit, label loopexit

no_exit:
        …
        tmp.7 = load a_addr
        tmp.8 = load row_addr
        tmp.9 = getelementptr tmp.7, tmp.8
        tmp.10 = load int* %i
        tmp.11 = getelementptr tmp.9, 0, tmp.10
        tmp.12 = load tmp.11
        tmp.13 = load b_addr
        tmp.14 = load i
        tmp.15 = getelementptr tmp.13, tmp.14
        tmp.16 = load column_addr
        tmp.17 = getelementptr tmp.15, 0, tmp.16
        tmp.18 = load tmp.17
        tmp.19 = mul tmp.12, tmp.18
        tmp.20 = add tmp.6, tmp.19
        store tmp.20, [ tmp.4 ]
        ….
        br label loopentry



Example 3: Transformed Code

tmp.20 = add tmp.6, tmp.19

switch pathValue {
      case 2: label path2-8

             case 3: label path3-8
      case 4, label path4-8

}

path2-8:
new.2.tmp.19 = mul tmp.12, tmp.18
new.2.tmp.20 = add 0.000000e+00, new.2.tmp.19

          br label Check-8

path3-8:
   new.3.tmp.19 = mul tmp.12, tmp.18

          new.3.tmp.20 = add tmp.20.copy, new.3.tmp.19
          br label Check-8

path4-8:
   new.4.tmp.19 = mul tmp.12, tmp.18

          new.4.tmp.20 = add  tmp.12.copy, new.4.tmp.19
          br label Check-8



Results: Crash Pre-emption

Performance overheads with 5 critical variables per function
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Static Analysis for Security

Motivation: Prevent access to critical Data; Memory
corruption attacks

Goal is to preemptively protect "security-critical data"
regardless of vulnerability

Can be accomplished by enforcing the source-code semantics on the
program binary

Approach: Encode the entire sequence of dependencies for
the critical location, and check that the sequence is not
violated during runtime.

Static Analysis is performed by the IMPACT compiler

Runtime Checking is performed as an RSE module



Use detection of program data-flow violations as an
indicator of malicious tampering with the system

prevent an attacker to exploit disconnect between source-level
semantics and execution semantics of the program

Security critical variables chosen based on app semantics

Employ a compile-time static program analysis to

extract a backward slice which collates all dependent instructions
along each control-path

form a signature, which encodes dependences as a set (or
sequence) of instruction PCs along each control-path

Compute runtime signatures for each critical variable

trusted bit associated with each instruction

only trusted instructions can update runtime signatures

check signatures for instructions with trusted-bit set

Information-Flow Signatures



1  int main()
2  {
3   char password[8] = "asecret";
4   char userpass[8];
5   printf(“Enter Password:\n”);
6   gets(userpass);
8   if(strncmp(userpass,password,7)==0)
9      printf("Success\n");
10   else
11     printf("Failed\n");
12 }

Security Checking 1: How do signatures
detect attacks ?

User enters “password”

Critical Variable: char password[8];  Signature: {3}

Attacker enters “attack! attack!”



1   int authenticate(char* username, char* password)

2   {

3  int authenticated=0;

4  int result;

5  char tmpbuf[512];

6      result = !strncmp(“asecret”,password,7);

7      snprintf(tmpbuf,sizeof(tmpbuf),”user: %s”,user);

8  tmpbuf[sizeof(tmpbuf)-1] = ‘\0’;

9  syslog(LOG_NOTICE,tmpbuf);

10  authenticated |= result;

Security Checking 2: Why do we need to encode
the entire dependency tree?

Critical Variable: char authenticated;  Signature: {10},{3}

Attacker overwrites authenticated

via the format string

Smarter attacker overwrites

result instead, realizing that it can

be used to influence 

    authenticated

Critical Variable: char authenticated;  Signature: {10,6},{3}



SSH Authentication Function

int sys_auth_passwd(Authctxt *authctxt, const char *password) {

1: struct passwd *pw = authctxt->pw;

char *encrypted_password;

/* Just use the supplied fake password if authctxt is invalid */

2: char *pw_password = authctxt->valid ? shadow_pw(pw) :

                    pw->pw_passwd; /*Critical Variable Definition*/

/* Check for users with no password. */

3: if (strcmp(pw_password, "") == 0 && strcmp(password, "") == 0)

return (1);

/* Encrypt the candidate password using the proper salt. */

4: encrypted_password = xcrypt(password,

    (pw_password[0] && pw_password[1]) ? pw_password : "xx");

/* Authentication is accepted if the encrypted passwords match */

5:    return (strcmp(encrypted_password, pw_password) == 0);

}

Critical Variable: pw_password



1  int main()

2  {

3   char password[8] = "a_secret";

4   char userpass[8];

5   printf(“Enter Password:\n”);

6   gets(userpass);

8   if(strncmp(userpass,password,7)==0)

9      printf("Success\n");

10   else

11     printf("Failed\n");

12 }

Security Checking:
How Do Signatures Detect Attacks ?

Critical Variable: char password[8];

Signature: {3}

Attacker overwrites 

“password”

User enters “password”



1   int authenticate(char* username, char* password)

2   {

3  int authenticated=0;

4  int result;

5  char tmpbuf[512];

6      result = strncmp(“asecret”,password,7);

7      snprintf(tmpbuf,sizeof(tmpbuf),”user: %s”,user);

8  tmpbuf[sizeof(tmpbuf)-1] = ‘\0’;

9  syslog(LOG_NOTICE,tmpbuf);

10  authenticated |= result;

Security Checking: Why Do we Need to Encode Entire
Dependency Tree?

Critical Variable: char authenticated;

Attacker overwrites authenticated via

the format string attack

Signature: {10},{3}

However, smarter attacker can

overwrite result instead, realizing

that it eventually writes

authenticated

New Signature: {10,6},{3}
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Hardware Prototype: Reliability and
Security Engine
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Trusted ILLIAC: The First Hardware
Provide applications-specific level of 

reliability and security, while delivering 

optimal performance 

Customized levels of trust enforced via 

an integrated approach involving: 

 - re-programmable hardware, 

 - compiler methods to: (i) extract security and 

   reliability properties and (ii) accelerate 

   computation

 - configurable OS 



Trusted ILLIAC: The Broader Context

New experience in system building: reliable and
secure processing architectures, smart compilers
combined with configurable OS and hardware
Pushing the boundaries in
customizable trusted
computing technologies

Enable university, industry,
and government collaboration

Train the next generation
of system designers and professionals
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Broad Research Support

National Science Foundation

Programmable Hardware and infrastructure support

Intel: Hardware/processor-level detection and recovery techniques

Reliability and Security Engine (RSE), a processor-level framework to deploy low-overhead
application-aware error detection and recovery mechanisms

IBM: benchmarking and enhancing reliability of operating systems

Develop methods for assessment of operating system robustness

Targets IBM AIX OS, Linux, Sun Solaris

Motorola:  security and reliability for wireless platforms

A testbed to explore seamless reliability issues and provide low-cost detection and recovery for
wireless devices (e.g., cell phones) and networks..

SUN

RAS (reliability, availability and serviceability) architecture of next generation dataservers

Processor-level error detection and recovery support

HP

Reliable and secure enterprise  computing

Deployment and automated generation of application-aware detection and recovery techniques
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An overall Reliability & Security Case
for the use of Trusted ILLIAC for
a particular critical application is

made by combining multiple
forms of evidence into an

argument graph.

Evidence can take the form of:

Stochastic Models (Mobius)

Formal Arguments (Model checking,
theorem proving)

Informal Arguments

Experimental Results

Building a Security or Reliability Case



Application Aware Checking in Hardware: Reliability
and Security Engine (RSE)

Goal: Provide application-aware checks for
           reliability and security

Approach:  Reconfigurable processor-level
hardware framework – Reliability and Security
Engine
Current features

On-core approach – processor, framework, and
modules part of the same core on a single die
Framework and modules implemented on an FPGA
Framework configured to: (i) embed modules
needed by application and (ii) route inputs to
modules

Available modules
Transparent hang/crash detection for OS and
applications
Automatic processor-level checkpoint and recovery
Malicious attack detection and masking

Area and performance overhead of RSE
implementation

Area increased by 9.4%
Maximum clock period increased by 5.9%

On-core approach
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Reliability and Security Engine:
Implementation
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Input interface

Fetch / Dispatch Width 4 instructions

Issue width 4 instructions

RUU / LSQ size 16/8 entries

Instruction L1 cache Size: 8 KB, 1-way associative

Data L1 cache Size: 8 KB, 1-way associative

Instruction L2 cache Size: 64 KB, 2-way associative

Data L2 Cache Size: 128 KB, 2-way associative

check
checkValid

Bus-Interface

Unit

External

Bus

Input Interface:

 Queue Size = 16

 32-bit regs = 80;

 Gate Count = 12K


