
1
WG 10.4, Guadeloupe, Jan 2007

Failures: Their definition,Failures: Their definition,

modelling & analysismodelling & analysis

 (Submitted to DSN)(Submitted to DSN)

BrianBrian Randell and Randell and Maciej KoutnyMaciej Koutny

2
WG 10.4, Guadeloupe, Jan 2007

Summary of the PaperSummary of the Paper

• We introduce the concept of a Structured Occurrence Net
(SON), based on that of an occurrence net (ON) - a well-
established formalism for an abstract record that represents
causality and concurrency information concerning a single
execution of a system.

• SONs consist of multiple related ONs, and are intended for
recording either actual system behaviour, or evidence
concerning alleged past behaviour.

• We show how SONs can enable better understanding of
complex fault-error-failure chains (i) among co-existing
interacting systems, (ii) between systems and their sub-
systems, and (iii) involving systems that are controlling,
supporting, creating or modifying other systems.

• We discuss how, perhaps using extended versions of
existing tools, SONs could form a basis for improved
techniques of system failure prevention and analysis.

3
WG 10.4, Guadeloupe, Jan 2007

• A failure occurs when an error “passes through” the system-user
interface and affects the service delivered by the system – a system of
course being composed of components which are themselves systems.
This failure may be significant, and thus constitute a fault, to the
enclosing system. Thus the manifestation of failures, faults and errors
follows a “fundamental chain”:

. . . failure fault error failure fault . . .
i.e.

. . . event cause state event cause . . .
• This chain can flow from one system to:

• another system that it is interacting with.
• the system which it is part of.
• a system which it creates or sustains.

• Typically, a failure will be judged to be due to multiple co-incident faults,
e.g. the activity of a hacker exploiting a bug left by a programmer.

The Failure/Fault/Error The Failure/Fault/Error ““ChainChain””

4
WG 10.4, Guadeloupe, Jan 2007

• Identifying failures (and hence errors and faults), even understanding
the concepts, is difficult when:

• there can be uncertainties about system boundaries.

• the very complexity of the systems (and of any specifications) is often a
major difficulty.

• the determination of possible causes or consequences of failure can be a
very subtle, and iterative, process.

• any provisions for preventing faults from causing failures may themselves
be fallible.

• Attempting to enumerate a system s possible failures beforehand is
normally impracticable.

• Instead, one can appeal to the notion of a “judgemental system”.

System FailuresSystem Failures

5
WG 10.4, Guadeloupe, Jan 2007

Systems Come in Threes!Systems Come in Threes!
• The “environment” of a system is the wider system that it affects (by its

correct functioning, and by its failures), and is affected by.

• What constitutes correct (failure-free) functioning might be implied by a
system specification – assuming that this exists, and is complete,
accurate and agreed. (Often the specification is part of the problem!)

• However, in principle a third system, a judgemental system, is
involved in determining whether any particular activity (or inactivity) of a
system in a given environment constitutes or would constitute – from its
viewpoint – a failure.

• The judgemental system and the environmental system might be one
and the same, and the judgement might be instant or delayed.

• The judgemental system might itself fail – as judged by some yet higher
system – and different judges, or the same judge at different times,
might come to different judgements.

6
WG 10.4, Guadeloupe, Jan 2007

Judgemental Judgemental SystemsSystems

• This term is deliberately broad – it covers from on-line failure detector
circuits, via someone equipped with a system specification, to the
retrospective activities of a court of enquiry (just as the term “system” is
meant to range from simple hardware devices to complex computer-
based systems, composed of h/w, s/w & people).

• Thus the judging activity may be clear-cut and automatic, or essentially
subjective – though even in the latter case a degree of predictability is
essential, otherwise the system designers task would be impossible.

• The judgement is an action by a system, and so can in principle fail –
either positively or negatively.

• This possibility is allowed for in the legal system, hence the concept of
a hierarchy of crown courts, appeal courts, supreme courts, etc.

• As appropriate, judgemental systems should use evidence concerning
the alleged failure, any prior contractual agreements and system
specifications, certification records, government guidelines, advice from
regulators, prior practice, common sense, etc., etc.

7
WG 10.4, Guadeloupe, Jan 2007

Occurrence NetsOccurrence Nets

• Directed acyclic graphs that portray the (alleged) past and
present state of affairs, in terms of places (i.e. conditions,
represented by circles), transitions (i.e. events, represented by
rectangles) and arrows (each from a place to a transition, or
from a transition to a place, representing (alleged) causality).

• For simple nets, an actual graphical representation suffices. (In
the case of complex nets, these are better represented in some
linguistic or tabular form.)

• We take advantage of our belated realization that the concepts
of system and state are not separate, but just a question of
abstraction, so that (different related) occurrence nets can
represent both systems and their states using the same symbol
- a place .

• In fact in this paper we introduce and define, and discuss the
utility of, several types of relationship, and term a set of related
occurrence nets a Structured Occurrence Net (SON).

8
WG 10.4, Guadeloupe, Jan 2007

(Graphical) Representation of (Graphical) Representation of ONsONs

9
WG 10.4, Guadeloupe, Jan 2007

System InteractionSystem Interaction

Thick dashed arcs indicate that one event is a causal predecessor of
another event (information flow was unidirectional), and edges indicate
that two events have been executed synchronously (information flow
was bidirectional).

10
WG 10.4, Guadeloupe, Jan 2007

A Two-Level View of a SystemA Two-Level View of a System

The upper level provides a high-level view of system which went
through two successive versions - the event in the middle represents a
version update. The lower occurrence net captures the behaviour of the
system during this period. The abstracts relation connecting conditions
in the lower part with those in the upper part which abstract them.

11
WG 10.4, Guadeloupe, Jan 2007

System Evolution and System Evolution and BehaviourBehaviour

This shows the existence of two systems, and some details of their
(interacting) activities

12
WG 10.4, Guadeloupe, Jan 2007

On-line andOn-line and

off-line systemoff-line system

modificationmodification

13
WG 10.4, Guadeloupe, Jan 2007

And system A begat system B . . .And system A begat system B . . .

This shows that one system has spawned another system, and after
that both systems went through some independent further evolutions -
and indicates how the latest versions of these systems have interacted.

14
WG 10.4, Guadeloupe, Jan 2007

Compositional (Spatial) AbstractionCompositional (Spatial) Abstraction

This shows the behaviour of a system and of its three component systems,
and how its behaviour is related to that of its components. (It does not
represent the matter of how, or indeed whether, the component systems are
enabled to interact, i.e., what design is used, or what connectors are
involved.) Each component system has the other two as its environment.

15
WG 10.4, Guadeloupe, Jan 2007

Abbreviation (Temporal Abstraction)Abbreviation (Temporal Abstraction)

Abbreviating parts of an occurrence net in effect defines atomic actions, i.e.,
actions that appear to be instantaneous to their environment.

16
WG 10.4, Guadeloupe, Jan 2007

Abbreviating (Abbreviating (‘‘collapsingcollapsing’’))

interacting activitiesinteracting activities

The rules that enable one to
make such abbreviations are
non-trivial when multiple
concurrent activities are shown
in the net - one has to avoid
introducing cycles into the
resulting graph.

17
WG 10.4, Guadeloupe, Jan 2007

Recovery PointsRecovery Points

To allow for the possibility of failure a system might, e.g., make use of
recovery points . Such recovery points can be recorded in retained
states that take no further (direct) part in the system s ongoing (normal)
behaviour, as shown above.

18
WG 10.4, Guadeloupe, Jan 2007

Judgemental Judgemental SystemsSystems

• The notion of a failure event involves, in principle, three
systems — the given (possibly failing) system, its
environment, and a judgemental system.

• The judgemental system may interact directly and
immediately with the given system, in which case it is part
of the system s environment, e.g., a built-in checking circuit,
or in a very different world, a football referee!

• Alternatively the judgemental system may be deployed after
the fact using an occurrence net that represents how the
failing event (is thought to have) occurred.

• Such an occurrence net can be recorded in a retained
state, e.g., that of the judgment system.

19
WG 10.4, Guadeloupe, Jan 2007

Post-hoc Post-hoc JudgementJudgement

This deliberately portrays a situation in which a judgement system has
obtained only incomplete evidence of the systems states and events
and even the causal relationships between conditions and events.

20
WG 10.4, Guadeloupe, Jan 2007

Failure AnalysisFailure Analysis

• SONs could be used to represent actual or assumed past
behaviour, or possible future behaviour, and to record F-
E-F chains between systems.

• They could be generated and recorded (semi?)
automatically – alternatively they might need to be
generated retrospectively, from whatever evidence and
testimony is available.

• Analysis of a SON typically involves following (possibly in
both directions) causal arrows within ONs, and the
various different sorts of relations between ONs.

• Such analysis is of course limited by the accuracy and
the completeness of the SON – and might be
interspersed with efforts at validating and enhancing the
SON.

21
WG 10.4, Guadeloupe, Jan 2007

Concluding RemarksConcluding Remarks

• Our various types of abstractions are all ones that could facilitate the
task of understanding complex systems and their failures, and
analyzing the cause(s) of such failures.

• They would in most cases be a natural consequence of the way the
systems, have been conceived and perceived. Thus they can be
viewed as providing a means of naturally structuring what would
otherwise be an impossibly large and complex occurrence net.

• Alternatively, they can be viewed as a way of reducing the
combinatorial complexity of the information accumulated and the
analyses performed in following fault-error-failure chains after the fact.

• In either case, computer assistance is needed, something we plan to
investigate, building on existing work at Newcastle and elsewhere.

• Our paper provides the formalizations of the various types of
abstraction that are needed as a starting point for this investigation. (It's
not just a set of pretty pictures!)

22
WG 10.4, Guadeloupe, Jan 2007

Examples of What YouExamples of What You’’ve Been Sparedve Been Spared

23
WG 10.4, Guadeloupe, Jan 2007

Some of our ReferencesSome of our References

• Best, E. and Randell, B. (1981). A Formal Model of Atomicity in Asynchronous
Systems, Acta Informatica, Vol. 16 (1981), pp 93-124. Springer-Verlag
Germany.
http://www.cs.ncl.ac.uk/research/pubs/articles/papers/397.pdf

• Chatain, T. and Jard, C. (2004). Symbolic Diagnosis of Partially Observable
Concurrent Systems. Proc. of FORTE 04, LNCS 3235, 326–342.

• Grahlmann, P and Best, E: PEP - More than a Petri net tool. Proc. of TACAS'96,
LNCS 1055, 1996, pp.397-401 [PEP]

• Holt, A.W., Shapiro, R.M., Saint, H., and Marshall, S., “Information System
Theory Project”, Appl. Data Research ADR 6606 (US Air Force, Rome Air
Development Center RADC-TR-68-305), 1968.

• Khomenko, V. and Koutny, M.: Branching Processes of High-Level Petri Nets,
Proc. of TACAS'03, LNCS 2619, 2003 pp.458-472,
http://www.cs.ncl.ac.uk/research/pubs/articles/papers/425.pdf

• Merlin, P.M. and Randell, B. State Restoration in Distributed Systems, In Proc
FTCS-8, Toulouse, France, 21-23 June 1978 pp. 129-134. IEEE Computer
Society Press 1978
http://www.cs.ncl.ac.uk/research/pubs/articles/papers/347.pdf

