Research Network Challenges and Opportunities

Matt Zekauskas, matt@internet2.edu Senior Engineer, Internet2 2006-06-29

Outline

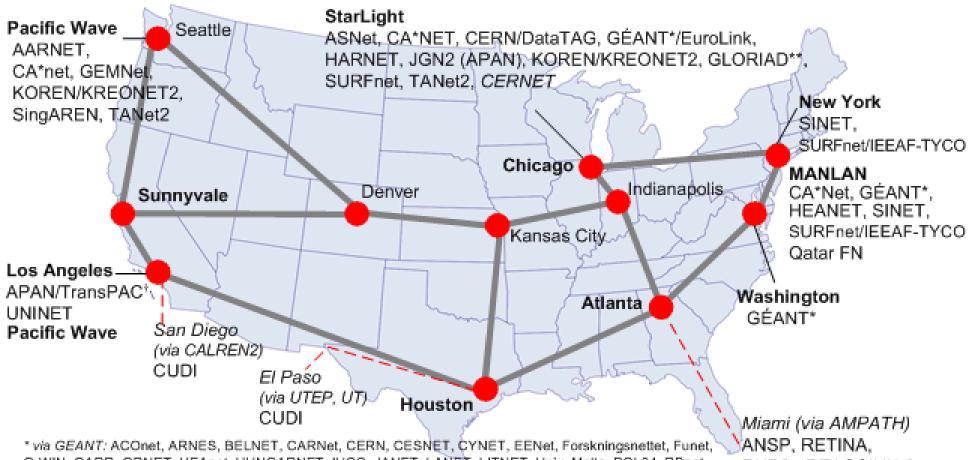
- Internet2?
- Current network issues
 - Abilene, a 10Gbps IP backbone
- New network issues
 - Above, plus "dynamic circuits"

Internet2

- US membership non-profit organization
 - 208 University Members
 - 70 Corporate Members
 - 53 Affiliate Members
- We operate an IP backbone network
- We are not NLR, a nonprofit formed to create R&E experimental national optical network; it's moving toward production & IP, we're moving toward circuits, has been work toward merger, may happen, but dead for now (we are investors in NLR...)

Abilene

- 10 Gbps IP Backbone
 - Carrier-provisioned OC 192 in the middle
 - Juniper T 640 routers
 - Best-effort, "overprovisioned"
 - < 2Gbps normal load</p>
- IPv4 and IPv6, native multicast, MPLS



Abilene

- Research facilitation (data + collocation)
 - Abilene Observatory project http://abilene.internet2.edu/observatory/
- 35 Connectors
 - Mostly regional aggregators
 - Some universities
- 246 Participants

• Extensive domestic and international 2006-06-29 Research Net Challenges. Research and Education (R&E) peering

Abilene, with International Peers

G-WIN, GARR, GRNET, HEAnet, HUNGARNET, IUCC, JANET, LAÑET, LITNET, Univ. Malta, POL34, RBnet, RNP2, REACCIUN-2 RCTS2, RedIRIS, Renater, RESTENA, REUNA2, Rhnet, RoEduNet, SANET, SUNET, SURFnet, SWITCH, RNP2, REACCIUN-2

ULAKBYM, UNINETT

¹ via APAN/TransPAC: WIDE/JGN, IMnet, CERNet/CSTnet/NSFCNET, KOREN/KREONET2, PREGINET,

SingAREN, TANET2, ThaiSARN, WIDE (v6)

** via GLORIAD: CSTNET, RBnet

Measurement Capabilities

•One way latency, jitter, loss -IPv4 and IPv6; On-demand available •Regular TCP/UDP throughput tests – ~1 Gbps -IPv4 and IPv6; On-demand available •SNMP (Abilene NOC) - Octets, packets, errors; collected frequently •Flow data (~"netflow) (ITEC Ohio) -Addresses anonymized by 0-ing the low order 11 bits Multicast beacon with historical data (NOC) Routing data -Both IGP and BGP - Measurement device participates in both Router data (NOC): "show" snapshots + syslog -See also Abilene Router Proxy

Research Net Challenges

Colocation for Research

PlanetLab

 New future: MPLS links so can act as router w/own links and peering

- AMP: active measurement from NLANR MNA (San Diego Supercomputer Ctr.)
- PMA: passive monitoring. Currently every interface on the IPLS router is instrumented. From NLANR/MNA.

Research Net Challenges

INTERNET®

Other network research stuff

- Buffer sizing project (Stanford):
 - Reduce buffers available to router interfaces (software controlled)
 - Take an anonymized but correlated packet trace
 - Look for throughput and latency anomalies
- Rapid raw SNMP to test link capacity measurement programs
- Occasionally run programs on behalf of researchers on backbone machines

Research Net Challenges

INTERNET®

Similarities with Commercial Networks...

- Daily usage among universities
 - It's IP
 - Email, web, file sharing, video conferencing, …
 - If you communicate with another university (or R&E entity) it just works

... and Differences

- Big Science datasets
 - Lots of very large transfers
 - Seen 7Gbps UDP from Caltech to CERN
- Lots of high-end video
 - 20 Mbps streams
 - 100's of Mbps HDTV
- Multicast

Security...

- Concerns similar to other larger backbones
- We have Arbor Peakflow SP
- Minimal staff... we distribute some work to the Research & Education ISAC
- Lots of small operators (with big pipes) (and small staffs) tied together
 - Operational coordination is a challenge

Routing

- Unlike the commercial world where business concerns drive a sane, mostly hierarchical structure, R&E networks tend to peer (and provide transit) promiscuously
- Connectivity is paramount
- Often driven by demos
- Special peerings/announcements don't necessarily get taken down, are forgotten

Michigan is in Korea?

- Chris Robb of the NOC adds a Michigan route from MERIT to Abilene
- Router says get there via Korea(!)

```
chrobb@IPLSng-re0# run show route 198.110.96.0

inet.0: 9808 destinations, 15350 routes (9775 active, 0 holddown, 35

hidden)

+ = Active Route, - = Last Active, * = Both

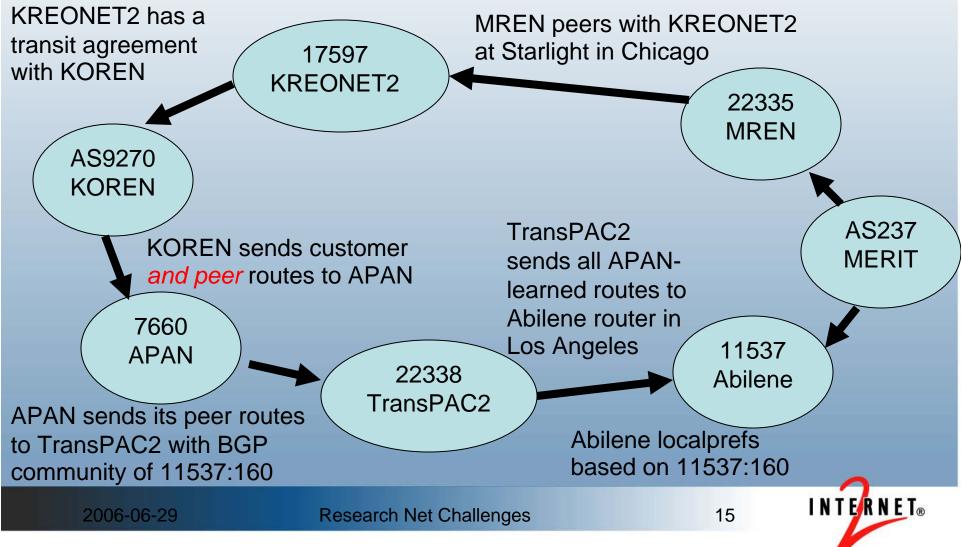
198.110.96.0/20

*[BGP/170] 00:45:42, MED 100, localpref 160, from 198.32.8.198

AS path: 22388 7660 9270 9270 9270 17579 22335 237 I

> to 198.32.8.81 via so-3/2/0.0

[BGP/170] 00:29:46, MED 10, localpref 140


AS path: 237 I

> to 192.122.183.9 via so-2/1/2.512

2006-06-29

Research Net Challenges 14
```

Michigan is in Korea?

Routing

- Previous example, comparisons to commercial networks, and potential solutions in a talk by Chris Robb: http://www.internet2.edu/presentations/ spring06/20060424-routingissuesrobb.pdf
- Can we agree on what "bad" routing is? Could be policy driven...

Research Net Challenges

INTERNET®

Routing

- Tend to end up with interesting, nonoptimal routes that are hard to understand
- Need more RouteViews, Looking Glass
- Alternate routing tends to be the most interesting and hardest to capture (unless a failure exposes a weird route)

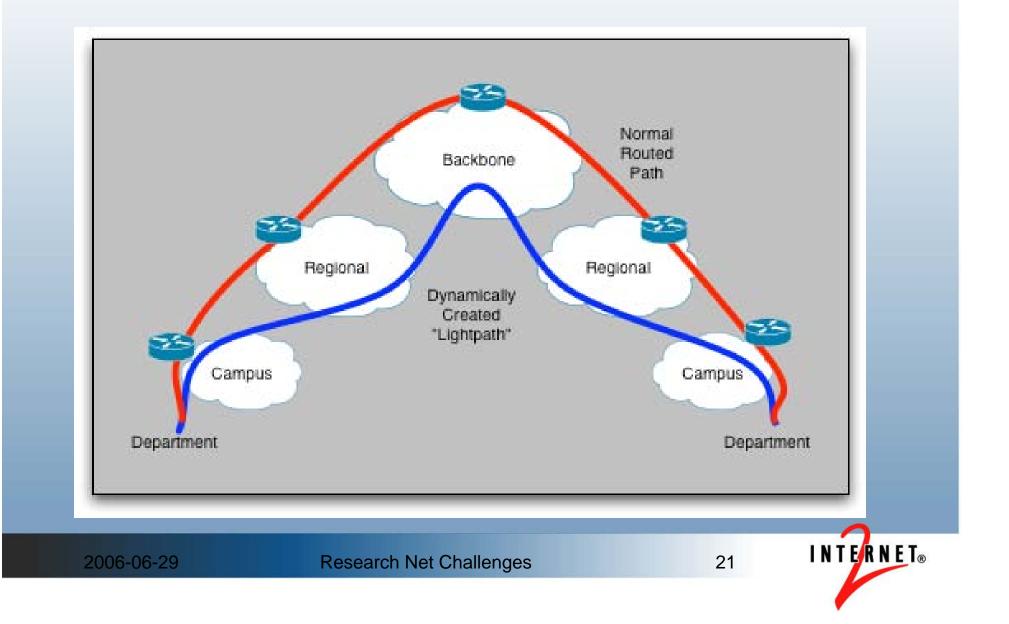
Other: End-to-End Performance

- In our world of distributed responsibility, how find the reason why don't get performance expect
- Today, should get 100Mbps end-to-end for our users. Median Ig. flow: 3-ish on Abilene.
- Additional instrumentation to help segment problem (moving toward perfSONAR, joint work with Europeans, other R&E networks)
- http://e2epi.internet2.edu/

Next revision of Abilene

- October 2007 End of current Abilene transport agreement (SONET links)
 - Replacement available by June 2007
 - Network design time frame: 2007-2012

INTERNET.


New Network Requirements

- Requirements multi-dimensional, for example:
 - Provide capabilities at all network layers (layer)
 - Provide capabilities for both short term and long term applications or projects (duration)
 - Provide capabilities at a variety of different levels of robustness, from production to experimental (robustness)
- An infrastructure consisting of dark fiber, a significant number of waves, and a production quality IP network
 - Create a new architecture for the R&E community
- New features: dynamic provisioning, hybrid models (combinations of circuit and packet switching)

Research Net Challenges

Next Generation Overview

Fast forward to the past?

- Gee, looks similar to ATM SVCs
- Telephony circuits
- Revenge of the "bell-heads"?
- Also seems like a continuation of the search for QoS / guarantees
 - Does Internet video really work?
 - Sometimes hard to overprovision everywhere

What's different?

- Multiple administrative domains
- Some applications do highly desire dedicated capacity
 - Physics Large Hadron Collider data: 2*10Gbps CERN to US hot all the time
 - e-VLBI: 1Gbps + from multiple radio telescopes to a central correlator
 - "GRID" middleware wants to schedule the network like it schedules CPUs

What's different?

- Large research networks cooperating on experimentation and implementation (Internet2, GEANT, ESnet)
- Some promising control plane technology

Dynamic Provisioning

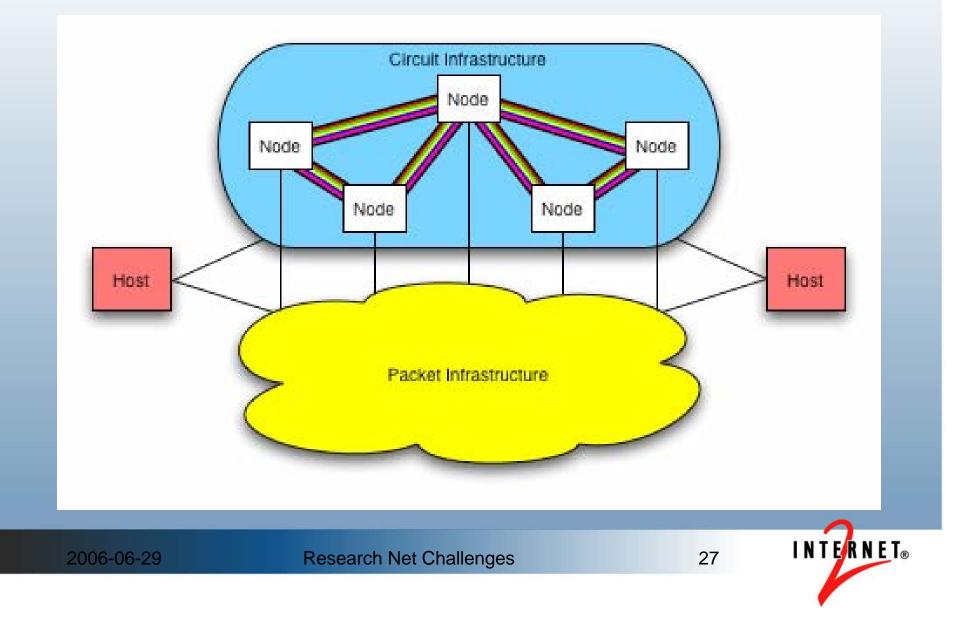
- Dynamic provisioning across administrative domains
 - Setup on the order of seconds to minutes
 - Durations on the order of hours
- Switching may require unique partnerships and development of capabilities on hardware platforms
 - For example, being able to isolate user capabilities at switching nodes
 - There is interest from commercial carriers from the point of view of providing additional services
- All this should be transparent to the user
 - View as a single network
 - Hybrid aspects must be built into the architecture

HOPI Project - Overview

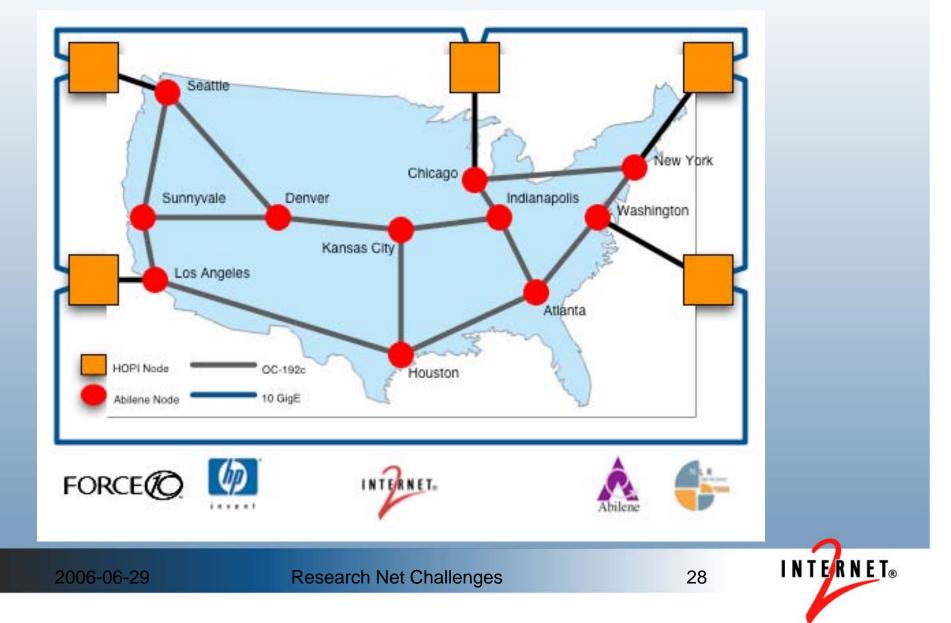
•We expect to see a rich set of capabilities available to network designers and end users

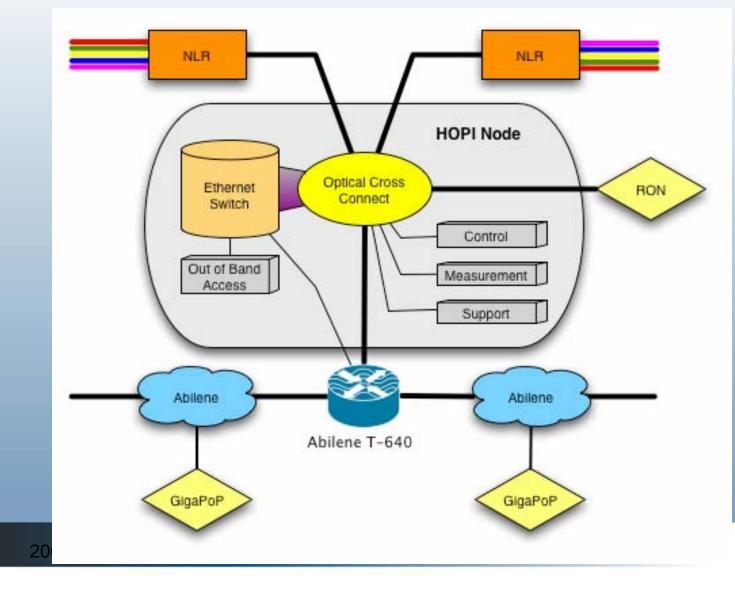
- Core IP packet switched networks
- A set of optically switched waves available for dynamic provisioning

•Examine a **hybrid** of shared IP packet switching and dynamically provisioned optical lambdas


•HOPI Project – Hybrid Optical and Packet Infrastructure - how does one put it all together?

- Dynamic Provisioning setup and teardown of optical paths
- Hybrid Question how do end hosts use the combined packet and circuit switched infrastructures?
- HOPI is a testbed for experiments, not a production network
- We are using experiment results to guide the next generation network




HOPI General Problem

HOPI Topology

HOPI Node

INTERNET®

HOPI Deployment

- Connections to other US testbeds:
 - UltraLight (High-energy Physics)
 - UltraScienceNet (Department of Energy)
 - CHEETAH (National Science Foundation funded project)
 - DRAGON (another NSF funded project)
- Anticipate a circuit from NY to London (through MANLAN) to attach to GEANT2 testbeds (~July 2006)
- First experiments: cross-domain control plane

Next Generation Design

- Use dedicated fiber from Level3
 - They maintain fiber, optical platform
 - We have full control over provisioning
- Built on Infinera platform providing innovative optical technology
 - Simple and convenient add/drop technology
 - Simple and convenient wave setup
 - Demonstrated high reliability in initial period of operation on the Level3 network
 - Economics of Infinera system are disruptive in the market place

Next Generation Design

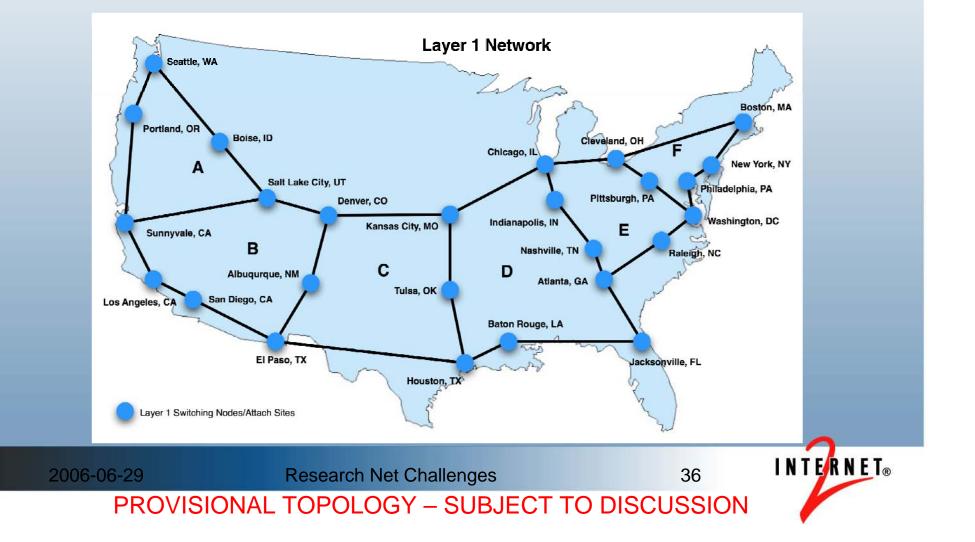
- Control Plane
 - Initial: manual, or "semi-manual"
 - Near term: carry over DRAGON control plane from HOPI testbed
 - Long term: ?

DRAGON

- Dynamic Resource Allocation over GMPLS Optical Networks
- NSF-funded project
- Network Aware Resource Broker
- Virtual Label Switched Router
- Application Specific Topologies
- http://dragon.east.isi.edu/

Next Generation Design

- Architecture has maximum flexibility. Every connector can access every wave on the system if needed
- System includes grooming capabilities lightpaths can be built over Ethernet or SONET
 - Can take advantage of advanced SONET cpabilities like GFP, VCAT, and LCAS
 - Capable of lightpath provisioning to the campus

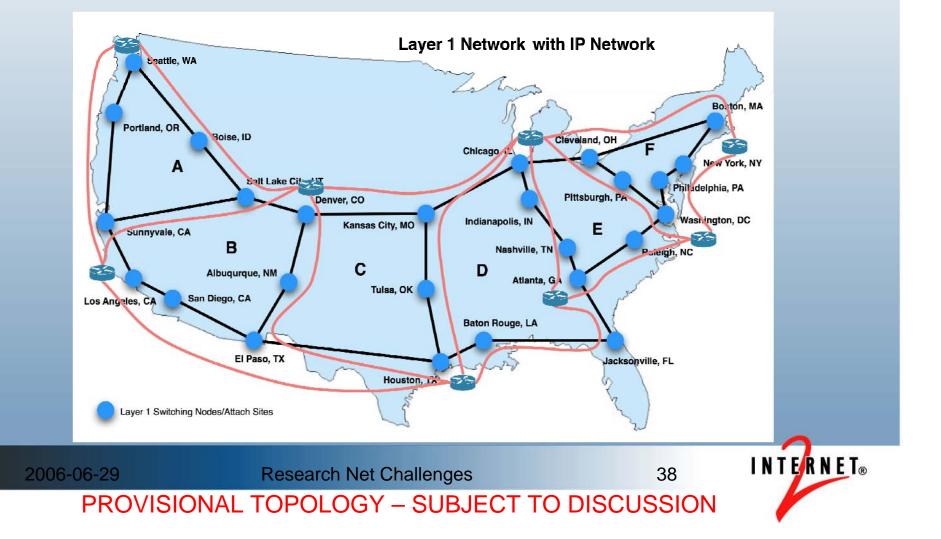

Next Generation Design

- Attachment expected to evolve to 2 x 10 Gbps connections
 - 10 Gbps IP connection
 - 10 Gbps point-to-point connection (capable of STS-1 granularity lightpaths provisioned in seconds), most likely provision using Ethernet (GFP based)
 - Hybrid capabilities
- Expect 20 24 connectors
 - Simple and consistent connection scheme
 - Promoting aggregation
 - Need input and discussion on exceptional cases

Research Net Challenges

INTERNET®

Layer 1 Topology


IP Network

- IP network built on top of optical system
 - High reliability architecture provides a variety of protection options
 - Possible commercial service offering standard connection may include commodity services
 - Current plan is to continue to use highly reliable Juniper routers, but open to new technologies
 - May use fewer routers, emphasizing point-to-point capabilities and hybrid networking
 - Potential near term option of 40 Gbps

Layer 1 Topology with IP Network

Observatory

- Intend to continue current IP layer observatory
- Add circuit information (control plane, errors)
- There isn't much compared with IP (utilization?)
- We will likely form a working group to do requirements and initial design

Research Net Challenges

Challenges: Control Plane

- Interoperation among multiple administrative domains still a prototype
- What about settlements/economics
 - Will there be any?
 - If so, what's the least overhead required
 - "land grabs"?
- There is now a new set of potential control plane attacks

Challenges: Control Plane

- Ensuring easy-to-understand picture of allocations and unused capacity
- Verifying you deliver what was asked for

Challenges: Debugging

- If end-to-end errors with concatentated segments, possibly using different technologies (SONET, Ethernet, MPLS), find the source...
- What do you need to verify the entire end-to-end path works as a system?

Challenges: Service Definition

- Want "Gigabit Ethernet" link
 - VLAN tags? 9000 byte MTUs? Spanning Tree?
 - What if cross traffic introduces jitter?
 - What if served by bonded smaller channels in middle, and that introduces some reordering?
- Want a service that is predictable, verifiable, repeatable... and end-to-end
- http://dragon.maxgigapop.net/twiki/bin/view/DRAGON/ CommonServiceDefinition

Challenges: Circuits + Routing

- People will use them as an "endaround" other security-motivated restrictions (sometimes with cause -pieces of older campus infrastructure)
- People will end up routing IP over it, creating new channels by mistake

References

- http://abilene.internet2.edu/observatory/
- http://www.internet2.edu/presentations/ spring06/20060424-routingissues-robb.pdf
- http://networks.internet2.edu/hopi/
- http://dragon.maxgigapop.net/twiki/bin/view/ DRAGON/CommonServiceDefinition
- http://dragon.east.isi.edu/
- http://cans2005.cstnet.cn/down/1102/A/aftern oon/DRAGON_at_CANS2005%20v2_2A.pdf

References

- http://networks.internet2.edu (next gen)
- http://events.internet2.edu/2006/designws/ (background material, presentations on the new network)

www.internet2.edu

