

CRUTIAL

CRitical UTility InfrastructurAL Resilience An Overview

Felicita Di Giandomenico ISTI-CNR, Pisa, Italy felicita.digiandomenico@isti.cnr.it

50th IFIP WG 10.4 Meeting - June 29- July 2, 2006

CRUTIAL CRitical Utility InfrastructurAL Resilience

Specific Targeted Research Project: FP6-2004-IST-4-027513

EU strategic objective: Towards a global dependability and security framework

Duration: January 2006 - December 2008

Coordinator: CESI RICERCA

Network and Infrastructures Department

Faculty of Sciences

University of Lisboa

LAAS-CNRS Centre National de la **Recherche Scientifique**

Consiglio Nazionale delle Ricerche

Katholieke Universiteit Leuven

consorzio nazionale per le telecomunicazioni

CRUTIAL Consortium

Focus on: Infrastructures operated by Power Utilities

- Power grids
- Control applications/Automation systems
- Information Systems
- Communication Systems
- Vision: Resilient distributed power control in spite of threats to the information and control infrastructures
- **Objectives:** > Provide modelling approaches for understanding and mastering the various interdependencies among power, control, communication and information infrastructures
 - Investigate distributed architectures enabling dependable control and management of the power grid

50th IFIP WG 10.4 Meeting - June 29- July 2, 2006

Motivations

Resilience of *critical utility infrastructures* needs to be improved.

• SCADA systems are **real-time** sys with some **fault-tolerance** concern classically **not** designed to be widely **distributed** or remotely accessed or **open**, and designed w/o **security** in mind

• Power utilities infrastructures are the target of **new threats vulnerabilities** emerging from tight coupling of power, control, communication and information infrastructures and from evolving control systems

- Risk is not well mastered
 - current configurations probably risk far more damaging failure
 scenarios than anticipated

Challenge

To make power control resilient in spite of threats to their information and communication infrastructures

Research Agenda

Analysis of critical scenarios

 in which faults in the information infrastructure provoke serious impacts on the controlled electric power infrastructure

• Investigation of models

- that cope with the scenario of openness, heterogeneity and evolvability endured by electrical utilities infrastructures
- Investigation of distributed architectures
 - enabling trustworthy control and management of the power grid
- Analysis and evaluation of control system scenarios
 - to provide support for the quantitative and qualitative analysis of the devised solutions

Identification and description of Control System Scenarios

Identification of scenarios

- analysis of the existing control systems
 - existing vulnerabilities vs. emerging issues
- investigation of new control applications
 - distributed generation and microgrids

Description of identified scenarios

- identification of interdependencies
- definitions of appropriate measures for resilience

Interdependencies modelling

- Methodologies and a conceptual modeling framework
 - Characterize and analyze interdependencies between the information infrastructures and the electric power infrastructure
 - Assess the impact of interdependencies on the resilience of these infrastructures wrt occurrence of critical outages

Major challenges:

- Model types of outages characteristic of interdependent critical infrastructures (*Cascading outages, Escalating outages and Common cause outages*)
- Develop an integrated modeling and evaluation approach taking into account accidental and malicious faults of the different infrastructures

- Model of individual infrastructures in isolation vs models combining multiple interdipendent infrastructures;
- Cope with complexity
 - Hierarchical and compositional modeling approach
- Analyze interdependences under different operation phases and regimes, with different configurations, behaviors and requirements
 - Multi-phased modeling approach
- Describe scenarios that involve variables with different orders of magnitude, or system parameters that are only partially defined
 - Stiffness problem and aggregation techniques
- Develop dynamic online modeling and evaluation methodologies to support adaptive reconfiguration strategies
 - From off-line to on-line evaluation

Testbed development

Two testbeds, integrating the electric power system and the information infrastructure

Objectives of testbeds:

- implementation of control applications (hierarchical centralized and decentralized ones) in order to better identify them;
- usage for architectural patterns;
- assessment of interdependencies, complementary to the modelling
- The first platform will be based on **power electronic converters** that are controlled from PCs interconnected over an open communication network (at K.U.Leuven)

• The latter platform will consist of **power station controllers** on a realtime control network, interconnected to corporate and control centre networks (at CESI RICERCA)

nformation So

^{50&}lt;sup>th</sup> IFIP WG 10.4 Meeting - June 29- July 2, 2006

Architectural solutions

- Definition of the overall architecture framework
 - Intrusion-tolerant architectures with and without trusted components
 - Architectural hybridization to enable trusted-trustworthy subsystem operation
- Middleware services and protocols
 - Fault and Intrusion tolerant services and protocols
 - Using distinct techniques that address different levels of criticality of the architecture
 - Able to support a diverse set of requirements from the applications

- Develop a framework to express a global security policy for the various organizations/departments involved in the infrastructure
- Base this framework on the Organisation-Based Access Control (OrBAC) model
- Monitoring mechanisms
 - Devise monitoring mechanisms allowing on-line adaptation to situations not predicted.

Main tasks:

- Fault diagnosis
- System reconfiguration

Analysis and evaluation of Control System Scenarios

Set-up of the modelling environment

•Selection of tools adequate to model critical infrastructure peculiarities

•Inclusion of different formalisms and relative compositional rules (support for layer and/or hierarchies) and solution algorithms under an integrator tool (candidates: DrawNET and Möbius)

Model based evaluation

- Evaluation of defined services and protocols, in terms of metrics that capture the interdependence aspects
- Experimental validation of architectural solutions
 - Validate some of the trusted run-time components of the architecture against attacks prevention or intrusions tolerance

More details at

http://crutial.cesiricerca.it

50th IFIP WG 10.4 Meeting - June 29- July 2, 2006