
1Dependable Computing System Lab

 Achieving High Survivability in Distributed
Systems through Automated Intrusion Response

Saurabh Bagchi
Dependable Computing Systems Lab (DCSL) &

The Center for Education and Research in Information Assurance and

Security (CERIAS)

School of Electrical and Computer Engineering

Purdue University

Joint work with: Yu-Sung Wu, Bingrui Foo, Matt Glause, Yu-chun Mao,

Gunjan Khanna (Students); Eugene H. Spafford (Faculty)

Work supported by:
NSF, Indiana 21st Century,
IBM, Avaya

2Dependable Computing System Lab

A Brief History of Me

• 1996-2001: MS/PhD student in Computer Science,

University of Illinois at Urbana-Champaign

– Advisor: Ravi Iyer and Zbigniew Kalbarczyk

– Thesis: Distributed Error Detection in Software Implemented

Fault Tolerance Middleware (Chameleon)

• 2002-present: Assistant Professor in the School of

Electrical and Computer Engineering

– Courtesy Appointment in Computer Science

– Group with 6 PhD students

• Attended and presented at FTCS/DSN in 1999, 2002-

now

– PDS PC member 2003-now

3Dependable Computing System Lab

Research Focus

• Payload system: Distributed system of interacting

services

• Automated diagnosis

– Accidental failure that can cascade

– Diagnosis through monitoring inter-service messages

• Automated containment and response
– Malicious failure

– Multi-stage failure

• Concrete problem areas
– Distributed e-learning application (Purdue)

– Distributed e-commerce application (IBM)

– Distributed VoIP application (Avaya)

4Dependable Computing System Lab

Intrusion Response in Distributed Systems: Basics

• Distributed System

– Interconnected entities and services

• Example: An eCommerce system (customers, bank, warehouse,

database, web applications, and etc.)

– A favorable target of cyber attacks and insider attacks

– Denial-of-service, Vandalizing, Stealing information, Illegal

transactions

• Challenges in protecting distributed systems

– Interactions between services allow “infection” to spread

– Heterogeneous services, some of them black box

– Need to limit impact to normal transactions or normal users

5Dependable Computing System Lab

Existing IRS

• Manual: Typically requires the administrator to check the

detection log files, identify the compromised region, and

enforce the containment

– Not automatic. Long reaction time

• Local response: Response taken at the site of detection

– Example: Snort cutting connection from suspicious host

– Possibly too late and infection has spread

• Static response: Pre-configured table from detector alarm

to response

– Example: RBAC systems

– Limited applicability to simple systems

6Dependable Computing System Lab

State-of-the-Art

• Dynamic response creation

• Responses created based on various factors

– Virulence of the attack

– Certainty that an attack is in progress

– Examples: CSM, Emerald

• Attacks are verified using network topology

• Alert fusion: Multiple alerts are aggregated to determine

the attack and response is taken for the attack

7Dependable Computing System Lab

Design Goals/Challenges

• Provide online response and containment while the attack

is in progress

• Maximize combination of survivability of the system and

resilience to future attacks

• Handle unanticipated attacks

• Work with incomplete knowledge of vulnerabilities and

attack paths

• Work with imperfect detectors

8Dependable Computing System Lab

Design Approach
• We know the (legitimate) interactions of services in the system

• We know the manifestations of the attack on the service, but not

the attack path

• Use a knowledge representation for the attack goals, rather than

the attack path

• Evaluate suitability of response based on disruptivity of response,

effectiveness of response to prior attacks of this type, likelihood

that attack is in progress

• Build in capability to leverage expert or administrator knowledge

and regulatory policies

• Result: ADEPTS – a system for adaptive intrusion response and

containment

9Dependable Computing System Lab

1. SSL module

buffer overflow in
Apache host 1

2.Execute

arbitrary code on
Apache host 1

4. Send malicious

chunk encoded
packet

3. Illegal access to
http document root

5. C library code

buffer overflowed

9. MySQL

buffer overflow

6. Chunk handling

buffer overflow
on Apache host 1

12. Execute

arbitrary code on
MySQL host 10. DoS of

MySQL

11. DoS webstore

8. DoS of Apache

host 2

7. DoS of Apache

host 1

13. MySQL

information leak
OR AND

QUORUM

2

n

1. SSL module

buffer overflow in
Apache host 1

2.Execute

arbitrary code on
Apache host 1

4. Send malicious

chunk encoded
packet

3. Illegal access to
http document root

5. C library code

buffer overflowed

9. MySQL

buffer overflow

6. Chunk handling

buffer overflow
on Apache host 1

12. Execute

arbitrary code on
MySQL host 10. DoS of

MySQL

11. DoS webstore

8. DoS of Apache

host 2

7. DoS of Apache

host 1

13. MySQL

information leak
OR AND

QUORUM

2

n

Detector
Alerts

SSL module

buffer overflow

Apache

Execution of

code on

Apache host

Access Apache

Web Root

Directory

MySQL

buffer

overflow

Execute code

on MySQL Host

a
c

d

e

a
b c

d

e
f

h

j

k

g

i

h

Matching

Attack Pattern
Template
Library

Sketch pad

Response
Decision

I-Graph

Baseline response: containment
around compromised nodes

Advanced response:
optimized response
for specific attack
pattern

Protected e-Commerce

System

Feedback: evaluation
of the effectiveness of

deployed responses

Attack Subgraph
Generation

10Dependable Computing System Lab

ADEPTS Knowledge Representation: I-GRAPH

1. SSL module

buffer overflow in
Apache host 1

2.Execute

arbitrary code on
Apache host 1

4. Send malicious

chunk encoded
packet

3. Illegal access to
http document root

5. C library code

buffer overflowed

9. MySQL

buffer overflow

6. Chunk handling

buffer overflow
on Apache host 1

12. Execute

arbitrary code on
MySQL host 10. DoS of

MySQL

11. DoS webstore

8. DoS of Apache

host 2

7. DoS of Apache

host 1

13. MySQL

information leak
OR AND

QUORUM

2

n

1. SSL module

buffer overflow in
Apache host 1

2.Execute

arbitrary code on
Apache host 1

4. Send malicious

chunk encoded
packet

3. Illegal access to
http document root

5. C library code

buffer overflowed

9. MySQL

buffer overflow

6. Chunk handling

buffer overflow
on Apache host 1

12. Execute

arbitrary code on
MySQL host 10. DoS of

MySQL

11. DoS webstore

8. DoS of Apache

host 2

7. DoS of Apache

host 1

13. MySQL

information leak
OR AND

QUORUM

2

n

11Dependable Computing System Lab

Process Flow & Architecture View of ADEPTS

1. Detection

framework flags

alerts

2. I-GRAPH

parameters

updated

3. Determine

locations to take

responses

4. Available

responses

determined

based on attack

parameters and

I-GRAPH

5. Responses

chosen and

deployed

6. Evaluation of

deployed

responses ADEPTS Control Center

Response Cmd via
SSH

Detector Alerts via

MessageQ

Protected Payload

Translate

alerts into
Events.

Reordering

Events

Portable I-

GRAPH

Generation

SNet of the

Protected System

CCI Update

On the fly Cycle breaking

Candidate

Labeling

Flag Nodes

Response

Repository

Evaluation

of

responses

Deciding

Response

Vulnerability

Description

Retrieve Operands

12Dependable Computing System Lab

Handling Unanticipated Attacks

• Unanticipated attack has two manifestations
1. No detector and therefore no alert, or

2. Alert generated but no corresponding node in the I-GRAPH

• For (1)
– Deduce the presence of missed alerts through placement in the

I-GRAPH

– Draw edges between disjoint parts of I-GRAPH

• For (2)
– Grow the I-GRAPH with general nodes (nodes formed based

on the alert)

– Connect general nodes to the rest of I-GRAPH with general

edges

– Weight on the general edge indicates likelihood that the alert

is part of attack scenario

13Dependable Computing System Lab

Current System

Apache

Clients

Firewall

MySQL

PHP

Data Backup

Search

Engine

Data mining
Maintenance

Programs

Warehouse /

Shipping

Bank

Apps

Firewall

Apache

Apps

Load

Balancer

PHP

ADEPTS Control Center

Response Cmd

via SSH

Detector Alerts

via MessageQ

Detectors :

1. Libsafe

2. Snort

3. File Access Monitor

4. Transaction Response
Time Monitor

5. Bank Abnormal
Account Activity Detector

14Dependable Computing System Lab

Survivability

Name Services involved Weight

Browse webstore Apache, MySQL 50

Add to shopping car t Apache, MySQL 100

Place order Apache, MySQL 100

Charge credit card Warehouse, Bank 100

Maintenance work Variable 50

Illegal read of file (20) Illegal process being run (50)

Illegal write to file

(30)

Corruption of Apache

docs/MySQL db (70)

Unauthorized credit

card charges (80)

Confidentiality leak of

customer info (100)

Crack ed administrator

password (90)

Unauthorized orders created or

shipped (80)

• Survivability is the high level metric – based on two
factors
– Transactions that are supported (in the face of attacks)

– System level goals that continue to be maintained

15Dependable Computing System Lab

Response Repository

Intrusion -centric channel Opcode Operand

KillProcess ProcessID

Shutdown Service/ Host

Restart Service/Host

General Responses

(channel independent)

Disable UserAccount

DenyFileAccess FileName UserPrivilege

DisableRead FileName UserPrivilege

Shared File Channel

DisableWrite FileName UserPrivilege

• Each response has two parts
– Opcode: Depends on intrusion-centric channel between

services

– Operand: Instantiated from the alerts

• Evaluation of entire response = opcode + operand
– Wildcards allowed for operands

16Dependable Computing System Lab

Scenario 1

-400

-200

0

200

400

600

800

1000

1200

S
u

rv
iv

a
b

il
it

y

Effect of illegal transactions on survivability

Unauthorized orders are made.

Send shipping request to warehouse

and craft the request form so that a

warehouse side buffer overrrun bug

fills the form with a victim's credit

card number.

'ls' to list webstore document root and

identify the script code informing

the warehouse to do shipments.

Use php_mime_split (CVE-2002-

0081) buffer overflow to insert

malicious code into Apache.

Scenario 1

Experiment #1 Survivability Improvement

17Dependable Computing System Lab

Multiple instances of attacks v.s. Survivability

0

200

400

600

800

1000

1200

Scenario 8 Attacks

S
u

rv
iv

a
b

il
it

y

No response

ADEPTS

Inst. 1 Inst. 5Inst. 4Inst. 3Inst. 2

18Dependable Computing System Lab

Handling Unanticipated Attacks
0. attacker sends packets to cause

Apache mod_ssl buffer overflow

12. heap -based buffer overflow on Apache

1. inject malicious code into Apache

2. ip/port scan to find SQL server

8. heap -based buffer overflow SQL

and inject malicious code into SQL

6. guess password of root

account on SQL server

13. send packets for creating shell

5. attacker sends packets to cause

Apache chunk buffer overflow

11. stack -based buffer overflow on Apache

3. stack -based buffer overflow SQL

14. create a shell out of SQL process

4. access / var/lib/mysql via

the malicious shell

9. access / var/lib/mysql via

spawned malicious process

7. login to SQL server as ‘root ’

10. modify SQL executable image to

create malicious SQL daemon

0. attacker sends packets to cause

Apache mod_ssl buffer overflow

12. heap -based buffer overflow on Apache

1. inject malicious code into Apache

2. ip/port scan to find SQL server

8. heap -based buffer overflow SQL

and inject malicious code into SQL

6. guess password of root

account on SQL server

13. send packets for creating shell

5. attacker sends packets to cause

Apache chunk buffer overflow

11. stack -based buffer overflow on Apache

3. stack -based buffer overflow SQL

14. create a shell out of SQL process

4. access / var/lib/mysql via

the malicious shell

9. access / var/lib/mysql via

spawned malicious process

7. login to SQL server as ‘root ’

10. modify SQL executable image to

create malicious SQL daemon

Remove node 12 from the
attack graph and run the
experiments

14 30

12
R1, R2 R3, R4

1st iteration

14 30
12

R3, R4

2nd iteration

R2 R4, R5

1st iteration

R7, R8

3rd iteration

R7

4th iteration

R6

14 30

12

31

14 30

12

31

14 30

12

31

14 30

46
R1, R2 R3, R4

1st iteration

14 30

R3, R4

2nd iteration

47

46

47

Complete attack graph

Incomplete
attack graph

without
capability for
unanticipated

attack
handling

Incomplete attack graph
with capability for

unanticipated attack
handling

19Dependable Computing System Lab

Conclusion

• We have a system (ADEPTS) for online reasoning about

multi-stage attacks for containment

• ADEPTS uses a knowledge representation of attack

consequences and service connections that can be grown

• ADEPTS learns about effectiveness of responses for

containing future attacks

• ADEPTS can respond to unanticipated attacks, albeit not

optimally

20Dependable Computing System Lab

What s in the works
• Attack template library – attack patterns with pre-

configured responses
– Optimized responses for specific attack manifestations or

policy based response

– ADEPTS can further deduce the potential connections between
an unanticipated alert and the other nodes in the I-GRAPH

– Challenges: How to match with the pattern? How to aggregate
multiple patterns? How to move an existing attack to a pattern?

• Synthetic diversity for improving survivability

– Leverage work on synthetically introducing diversity to create
diverse replicas for services

– Use knowledge of diversity introducing technique to build I-
GRAPH

21Dependable Computing System Lab

Publications
Gunjan Khanna, Saurabh Bagchi, Kirk Beaty, Andrew Kochut, and Gautam
Kar, “Providing Automated Detection of Problems in Virtualized Servers
using Monitor framework,” In the Workshop on Applied Software Reliability
(WASR), held with the IEEE International Conference on Dependable
Systems and Networks (DSN), 6 pages, June 25-28, 2006.
Gunjan Khanna, Padma Varadharajan, and Saurabh Bagchi, “Automated
Online Monitoring of Distributed Applications through External Monitors,”
IEEE Transactions on Dependable and Secure Computing, vol. 3, no. 2, pp.
115-129, Apr-Jun, 2006.
Yu-Sung Wu, Bingrui Foo, Yu-Chun Mao, Saurabh Bagchi, Eugene H.
Spafford, “Automated Adaptive Intrusion Containment in Systems of
Interacting Services,” Accepted to appear in Journal of Computer Networks,
special issue on “Security through Self-Protecting and Self-Healing Systems”,
to appear Fall 2006.
Bingrui Foo, Yu-Sung Wu, Yu-Chun Mao, Saurabh Bagchi, and Eugene
Spafford, “ADEPTS: Adaptive Intrusion Response using Attack Graphs in an
E-Commerce Environment,” In the International Conference on Dependable
Systems and Networks (DSN), pp. 508-517, Yokohama, Japan, June 28 - July
1, 2005.

