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A Brief History of Me

• 1996-2001: MS/PhD student in Computer Science,

University of Illinois at Urbana-Champaign

– Advisor: Ravi Iyer and Zbigniew Kalbarczyk

– Thesis: Distributed Error Detection in Software Implemented

Fault Tolerance Middleware (Chameleon)

• 2002-present: Assistant Professor in the School of

Electrical and Computer Engineering

– Courtesy Appointment in Computer Science

– Group with 6 PhD students

• Attended and presented at FTCS/DSN in 1999, 2002-

now

– PDS PC member 2003-now
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Research Focus

• Payload system: Distributed system of interacting

services

• Automated diagnosis

– Accidental failure that can cascade

– Diagnosis through monitoring inter-service messages

• Automated containment and response
– Malicious failure

– Multi-stage failure

• Concrete problem areas
– Distributed e-learning application (Purdue)

– Distributed e-commerce application (IBM)

– Distributed VoIP application (Avaya)
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Intrusion Response in Distributed Systems: Basics

• Distributed System

– Interconnected entities and services

• Example: An eCommerce system (customers, bank, warehouse,

database, web applications, and etc.)

– A favorable target of cyber attacks and insider attacks

– Denial-of-service, Vandalizing, Stealing information, Illegal

transactions

• Challenges in protecting distributed systems

– Interactions between services allow “infection” to spread

– Heterogeneous services, some of them black box

– Need to limit impact to normal transactions or normal users
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Existing IRS

• Manual: Typically requires the administrator to check the

detection log files, identify the compromised region, and

enforce the containment

– Not automatic. Long reaction time

• Local response: Response taken at the site of detection

– Example: Snort cutting connection from suspicious host

– Possibly too late and infection has spread

• Static response: Pre-configured table from detector alarm

to response

– Example: RBAC systems

– Limited applicability to simple systems
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State-of-the-Art

• Dynamic response creation

• Responses created based on various factors

– Virulence of the attack

– Certainty that an attack is in progress

– Examples: CSM, Emerald

• Attacks are verified using network topology

• Alert fusion: Multiple alerts are aggregated to determine

the attack and response is taken for the attack
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Design Goals/Challenges

• Provide online response and containment while the attack

is in progress

• Maximize combination of survivability of the system and

resilience to future attacks

• Handle unanticipated attacks

• Work with incomplete knowledge of vulnerabilities and

attack paths

• Work with imperfect detectors
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Design Approach
• We know the (legitimate) interactions of services in the system

• We know the manifestations of the attack on the service, but not

the attack path

• Use a knowledge representation for the attack goals, rather than

the attack path

• Evaluate suitability of response based on disruptivity of response,

effectiveness of response to prior attacks of this type, likelihood

that attack is in progress

• Build in capability to leverage expert or administrator knowledge

and regulatory policies

• Result: ADEPTS – a system for adaptive intrusion response and

containment
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ADEPTS Knowledge Representation: I-GRAPH
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Process Flow & Architecture View of ADEPTS
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Handling Unanticipated Attacks

• Unanticipated attack has two manifestations
1. No detector and therefore no alert, or

2. Alert generated but no corresponding node in the I-GRAPH

• For (1)
– Deduce the presence of missed alerts through placement in the

I-GRAPH

– Draw edges between disjoint parts of I-GRAPH

• For (2)
– Grow the I-GRAPH with general nodes (nodes formed based

on the alert)

– Connect general nodes to the rest of I-GRAPH with general

edges

– Weight on the general edge indicates likelihood that the alert

is part of attack scenario
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Survivability

Name Services involved  Weight  

Browse webstore  Apache, MySQL  50 

Add to shopping car t Apache, MySQL  100 

Place order  Apache, MySQL  100 

Charge credit card  Warehouse, Bank  100 

Maintenance work  Variable  50 

 
Illegal read of file (20)  Illegal process being run (50)  

Illegal write to file 

(30) 

Corruption of Apache 

docs/MySQL db (70) 

Unauthorized credit 

card charges (80)  

Confidentiality leak of 

customer info (100) 

Crack ed administrator 

password  (90) 

Unauthorized orders created or 

shipped (80)  

 

• Survivability is the high level metric – based on two
factors
– Transactions that are supported (in the face of attacks)

– System level goals that continue to be maintained
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Response Repository

Intrusion -centric channel  Opcode  Operand  

KillProcess  ProcessID  

Shutdown  Service/ Host 

Restart  Service/Host  

General Responses 

(channel independent)  

Disable  UserAccount  

DenyFileAccess  FileName UserPrivilege   

DisableRead  FileName UserPrivilege   

Shared File Channel  

DisableWrite  FileName UserPrivilege   

 

• Each response has two parts
– Opcode: Depends on intrusion-centric channel between

services

– Operand: Instantiated from the alerts

• Evaluation of entire response = opcode + operand
– Wildcards allowed for operands
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Scenario 1
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Handling Unanticipated Attacks
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Conclusion

• We have a system (ADEPTS) for online reasoning about

multi-stage attacks for containment

• ADEPTS uses a knowledge representation of attack

consequences and service connections that can be grown

• ADEPTS learns about effectiveness of responses for

containing future attacks

• ADEPTS can respond to unanticipated attacks, albeit not

optimally
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What s in the works
• Attack template library – attack patterns with pre-

configured responses
– Optimized responses for specific attack manifestations or

policy based response

– ADEPTS can further deduce the potential connections between
an unanticipated alert and the other nodes in the I-GRAPH

– Challenges: How to match with the pattern? How to aggregate
multiple patterns? How to move an existing attack to a pattern?

• Synthetic diversity for improving survivability

– Leverage work on synthetically introducing diversity to create
diverse replicas for services

– Use knowledge of diversity introducing technique to build I-
GRAPH



21Dependable Computing System Lab

Publications
Gunjan Khanna, Saurabh Bagchi, Kirk Beaty, Andrew Kochut, and Gautam
Kar, “Providing Automated Detection of Problems in Virtualized Servers
using Monitor framework,” In the Workshop on Applied Software Reliability
(WASR), held with the IEEE International Conference on Dependable
Systems and Networks (DSN), 6 pages, June 25-28, 2006.
Gunjan Khanna, Padma Varadharajan, and Saurabh Bagchi, “Automated
Online Monitoring of Distributed Applications through External Monitors,”
IEEE Transactions on Dependable and Secure Computing, vol. 3,  no. 2,  pp.
115-129,  Apr-Jun,  2006.
Yu-Sung Wu, Bingrui Foo, Yu-Chun Mao, Saurabh Bagchi, Eugene H.
Spafford, “Automated Adaptive Intrusion Containment in Systems of
Interacting Services,” Accepted to appear in Journal of Computer Networks,
special issue on “Security through Self-Protecting and Self-Healing Systems”,
to appear Fall 2006.
Bingrui Foo, Yu-Sung Wu, Yu-Chun Mao, Saurabh Bagchi, and Eugene
Spafford, “ADEPTS: Adaptive Intrusion Response using Attack Graphs in an
E-Commerce Environment,” In the International Conference on Dependable
Systems and Networks (DSN), pp. 508-517, Yokohama, Japan, June 28 - July
1, 2005.


